MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactval Structured version   Visualization version   GIF version

Theorem grplactval 18939
Description: The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
grplactval ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔   𝐵,𝑎
Allowed substitution hints:   𝐵(𝑔)   𝐹(𝑔,𝑎)

Proof of Theorem grplactval
StepHypRef Expression
1 grplact.1 . . . 4 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 grplact.2 . . . 4 𝑋 = (Base‘𝐺)
31, 2grplactfval 18938 . . 3 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
43fveq1d 6828 . 2 (𝐴𝑋 → ((𝐹𝐴)‘𝐵) = ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵))
5 oveq2 7361 . . 3 (𝑎 = 𝐵 → (𝐴 + 𝑎) = (𝐴 + 𝐵))
6 eqid 2729 . . 3 (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎))
7 ovex 7386 . . 3 (𝐴 + 𝐵) ∈ V
85, 6, 7fvmpt 6934 . 2 (𝐵𝑋 → ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵) = (𝐴 + 𝐵))
94, 8sylan9eq 2784 1 ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5176  cfv 6486  (class class class)co 7353  Basecbs 17138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356
This theorem is referenced by:  cayleylem2  19310  dchrsum2  27195  sumdchr2  27197
  Copyright terms: Public domain W3C validator