| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplactval | Structured version Visualization version GIF version | ||
| Description: The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.) |
| Ref | Expression |
|---|---|
| grplact.1 | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| grplact.2 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grplactval | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴)‘𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | . . . 4 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 2 | grplact.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | 1, 2 | grplactfval 19029 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
| 4 | 3 | fveq1d 6883 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝐹‘𝐴)‘𝐵) = ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))‘𝐵)) |
| 5 | oveq2 7418 | . . 3 ⊢ (𝑎 = 𝐵 → (𝐴 + 𝑎) = (𝐴 + 𝐵)) | |
| 6 | eqid 2736 | . . 3 ⊢ (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) | |
| 7 | ovex 7443 | . . 3 ⊢ (𝐴 + 𝐵) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6991 | . 2 ⊢ (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))‘𝐵) = (𝐴 + 𝐵)) |
| 9 | 4, 8 | sylan9eq 2791 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴)‘𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: cayleylem2 19399 dchrsum2 27236 sumdchr2 27238 |
| Copyright terms: Public domain | W3C validator |