![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplactval | Structured version Visualization version GIF version |
Description: The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.) |
Ref | Expression |
---|---|
grplact.1 | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
grplact.2 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
grplactval | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴)‘𝐵) = (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplact.1 | . . . 4 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
2 | grplact.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
3 | 1, 2 | grplactfval 18996 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
4 | 3 | fveq1d 6892 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝐹‘𝐴)‘𝐵) = ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))‘𝐵)) |
5 | oveq2 7421 | . . 3 ⊢ (𝑎 = 𝐵 → (𝐴 + 𝑎) = (𝐴 + 𝐵)) | |
6 | eqid 2725 | . . 3 ⊢ (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) | |
7 | ovex 7446 | . . 3 ⊢ (𝐴 + 𝐵) ∈ V | |
8 | 5, 6, 7 | fvmpt 6998 | . 2 ⊢ (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))‘𝐵) = (𝐴 + 𝐵)) |
9 | 4, 8 | sylan9eq 2785 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴)‘𝐵) = (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5227 ‘cfv 6543 (class class class)co 7413 Basecbs 17174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 |
This theorem is referenced by: cayleylem2 19367 dchrsum2 27214 sumdchr2 27216 |
Copyright terms: Public domain | W3C validator |