MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactval Structured version   Visualization version   GIF version

Theorem grplactval 17870
Description: The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
grplactval ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔   𝐵,𝑎
Allowed substitution hints:   𝐵(𝑔)   𝐹(𝑔,𝑎)

Proof of Theorem grplactval
StepHypRef Expression
1 grplact.1 . . . 4 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 grplact.2 . . . 4 𝑋 = (Base‘𝐺)
31, 2grplactfval 17869 . . 3 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
43fveq1d 6434 . 2 (𝐴𝑋 → ((𝐹𝐴)‘𝐵) = ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵))
5 oveq2 6912 . . 3 (𝑎 = 𝐵 → (𝐴 + 𝑎) = (𝐴 + 𝐵))
6 eqid 2824 . . 3 (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎))
7 ovex 6936 . . 3 (𝐴 + 𝐵) ∈ V
85, 6, 7fvmpt 6528 . 2 (𝐵𝑋 → ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵) = (𝐴 + 𝐵))
94, 8sylan9eq 2880 1 ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cmpt 4951  cfv 6122  (class class class)co 6904  Basecbs 16221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907
This theorem is referenced by:  cayleylem2  18182  dchrsum2  25405  sumdchr2  25407
  Copyright terms: Public domain W3C validator