MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactval Structured version   Visualization version   GIF version

Theorem grplactval 18974
Description: The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
grplactval ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔   𝐵,𝑎
Allowed substitution hints:   𝐵(𝑔)   𝐹(𝑔,𝑎)

Proof of Theorem grplactval
StepHypRef Expression
1 grplact.1 . . . 4 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 grplact.2 . . . 4 𝑋 = (Base‘𝐺)
31, 2grplactfval 18973 . . 3 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
43fveq1d 6860 . 2 (𝐴𝑋 → ((𝐹𝐴)‘𝐵) = ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵))
5 oveq2 7395 . . 3 (𝑎 = 𝐵 → (𝐴 + 𝑎) = (𝐴 + 𝐵))
6 eqid 2729 . . 3 (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎))
7 ovex 7420 . . 3 (𝐴 + 𝐵) ∈ V
85, 6, 7fvmpt 6968 . 2 (𝐵𝑋 → ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵) = (𝐴 + 𝐵))
94, 8sylan9eq 2784 1 ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  Basecbs 17179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390
This theorem is referenced by:  cayleylem2  19343  dchrsum2  27179  sumdchr2  27181
  Copyright terms: Public domain W3C validator