MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactval Structured version   Visualization version   GIF version

Theorem grplactval 18854
Description: The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
grplactval ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔   𝐵,𝑎
Allowed substitution hints:   𝐵(𝑔)   𝐹(𝑔,𝑎)

Proof of Theorem grplactval
StepHypRef Expression
1 grplact.1 . . . 4 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 grplact.2 . . . 4 𝑋 = (Base‘𝐺)
31, 2grplactfval 18853 . . 3 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
43fveq1d 6845 . 2 (𝐴𝑋 → ((𝐹𝐴)‘𝐵) = ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵))
5 oveq2 7366 . . 3 (𝑎 = 𝐵 → (𝐴 + 𝑎) = (𝐴 + 𝐵))
6 eqid 2733 . . 3 (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎))
7 ovex 7391 . . 3 (𝐴 + 𝐵) ∈ V
85, 6, 7fvmpt 6949 . 2 (𝐵𝑋 → ((𝑎𝑋 ↦ (𝐴 + 𝑎))‘𝐵) = (𝐴 + 𝐵))
94, 8sylan9eq 2793 1 ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cmpt 5189  cfv 6497  (class class class)co 7358  Basecbs 17088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361
This theorem is referenced by:  cayleylem2  19200  dchrsum2  26632  sumdchr2  26634
  Copyright terms: Public domain W3C validator