Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cayleylem2 | Structured version Visualization version GIF version |
Description: Lemma for cayley 19022. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayleylem1.x | ⊢ 𝑋 = (Base‘𝐺) |
cayleylem1.p | ⊢ + = (+g‘𝐺) |
cayleylem1.u | ⊢ 0 = (0g‘𝐺) |
cayleylem1.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
cayleylem1.s | ⊢ 𝑆 = (Base‘𝐻) |
cayleylem1.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
Ref | Expression |
---|---|
cayleylem2 | ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6773 | . . . 4 ⊢ ((𝐹‘𝑥) = (0g‘𝐻) → ((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 )) | |
2 | simpr 485 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
3 | cayleylem1.x | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
4 | cayleylem1.u | . . . . . . . . 9 ⊢ 0 = (0g‘𝐺) | |
5 | 3, 4 | grpidcl 18607 | . . . . . . . 8 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
6 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 0 ∈ 𝑋) |
7 | cayleylem1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
8 | 7, 3 | grplactval 18677 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
9 | 2, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
10 | cayleylem1.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
11 | 3, 10, 4 | grprid 18610 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝑥 + 0 ) = 𝑥) |
12 | 9, 11 | eqtrd 2778 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = 𝑥) |
13 | 3 | fvexi 6788 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
14 | cayleylem1.h | . . . . . . . . 9 ⊢ 𝐻 = (SymGrp‘𝑋) | |
15 | 14 | symgid 19009 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ( I ↾ 𝑋) = (0g‘𝐻)) |
16 | 13, 15 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝑋) = (0g‘𝐻) |
17 | 16 | fveq1i 6775 | . . . . . 6 ⊢ (( I ↾ 𝑋)‘ 0 ) = ((0g‘𝐻)‘ 0 ) |
18 | fvresi 7045 | . . . . . . 7 ⊢ ( 0 ∈ 𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 ) | |
19 | 6, 18 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 ) |
20 | 17, 19 | eqtr3id 2792 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐻)‘ 0 ) = 0 ) |
21 | 12, 20 | eqeq12d 2754 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 ) ↔ 𝑥 = 0 )) |
22 | 1, 21 | syl5ib 243 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
23 | 22 | ralrimiva 3103 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
24 | cayleylem1.s | . . . 4 ⊢ 𝑆 = (Base‘𝐻) | |
25 | 3, 10, 4, 14, 24, 7 | cayleylem1 19020 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
26 | eqid 2738 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
27 | 3, 24, 4, 26 | ghmf1 18863 | . . 3 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
28 | 25, 27 | syl 17 | . 2 ⊢ (𝐺 ∈ Grp → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
29 | 23, 28 | mpbird 256 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 GrpHom cghm 18831 SymGrpcsymg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-tset 16981 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-efmnd 18508 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-ghm 18832 df-ga 18896 df-symg 18975 |
This theorem is referenced by: cayley 19022 |
Copyright terms: Public domain | W3C validator |