|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cayleylem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cayley 19433. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| cayleylem1.x | ⊢ 𝑋 = (Base‘𝐺) | 
| cayleylem1.p | ⊢ + = (+g‘𝐺) | 
| cayleylem1.u | ⊢ 0 = (0g‘𝐺) | 
| cayleylem1.h | ⊢ 𝐻 = (SymGrp‘𝑋) | 
| cayleylem1.s | ⊢ 𝑆 = (Base‘𝐻) | 
| cayleylem1.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | 
| Ref | Expression | 
|---|---|
| cayleylem2 | ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq1 6904 | . . . 4 ⊢ ((𝐹‘𝑥) = (0g‘𝐻) → ((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 )) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 3 | cayleylem1.x | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | cayleylem1.u | . . . . . . . . 9 ⊢ 0 = (0g‘𝐺) | |
| 5 | 3, 4 | grpidcl 18984 | . . . . . . . 8 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) | 
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 0 ∈ 𝑋) | 
| 7 | cayleylem1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 8 | 7, 3 | grplactval 19061 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) | 
| 9 | 2, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) | 
| 10 | cayleylem1.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 11 | 3, 10, 4 | grprid 18987 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝑥 + 0 ) = 𝑥) | 
| 12 | 9, 11 | eqtrd 2776 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = 𝑥) | 
| 13 | 3 | fvexi 6919 | . . . . . . . 8 ⊢ 𝑋 ∈ V | 
| 14 | cayleylem1.h | . . . . . . . . 9 ⊢ 𝐻 = (SymGrp‘𝑋) | |
| 15 | 14 | symgid 19420 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ( I ↾ 𝑋) = (0g‘𝐻)) | 
| 16 | 13, 15 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝑋) = (0g‘𝐻) | 
| 17 | 16 | fveq1i 6906 | . . . . . 6 ⊢ (( I ↾ 𝑋)‘ 0 ) = ((0g‘𝐻)‘ 0 ) | 
| 18 | fvresi 7194 | . . . . . . 7 ⊢ ( 0 ∈ 𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 ) | |
| 19 | 6, 18 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 ) | 
| 20 | 17, 19 | eqtr3id 2790 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐻)‘ 0 ) = 0 ) | 
| 21 | 12, 20 | eqeq12d 2752 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 ) ↔ 𝑥 = 0 )) | 
| 22 | 1, 21 | imbitrid 244 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) | 
| 23 | 22 | ralrimiva 3145 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) | 
| 24 | cayleylem1.s | . . . 4 ⊢ 𝑆 = (Base‘𝐻) | |
| 25 | 3, 10, 4, 14, 24, 7 | cayleylem1 19431 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | 
| 26 | eqid 2736 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 27 | 3, 24, 4, 26 | ghmf1 19265 | . . 3 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) | 
| 28 | 25, 27 | syl 17 | . 2 ⊢ (𝐺 ∈ Grp → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) | 
| 29 | 23, 28 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ↦ cmpt 5224 I cid 5576 ↾ cres 5686 –1-1→wf1 6557 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 0gc0g 17485 Grpcgrp 18952 GrpHom cghm 19231 SymGrpcsymg 19387 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-tset 17317 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-efmnd 18883 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-ghm 19232 df-ga 19309 df-symg 19388 | 
| This theorem is referenced by: cayley 19433 | 
| Copyright terms: Public domain | W3C validator |