| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayleylem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cayley 19321. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cayleylem1.x | ⊢ 𝑋 = (Base‘𝐺) |
| cayleylem1.p | ⊢ + = (+g‘𝐺) |
| cayleylem1.u | ⊢ 0 = (0g‘𝐺) |
| cayleylem1.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
| cayleylem1.s | ⊢ 𝑆 = (Base‘𝐻) |
| cayleylem1.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| Ref | Expression |
|---|---|
| cayleylem2 | ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6816 | . . . 4 ⊢ ((𝐹‘𝑥) = (0g‘𝐻) → ((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 )) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 3 | cayleylem1.x | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | cayleylem1.u | . . . . . . . . 9 ⊢ 0 = (0g‘𝐺) | |
| 5 | 3, 4 | grpidcl 18873 | . . . . . . . 8 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 0 ∈ 𝑋) |
| 7 | cayleylem1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 8 | 7, 3 | grplactval 18950 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
| 9 | 2, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
| 10 | cayleylem1.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 11 | 3, 10, 4 | grprid 18876 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝑥 + 0 ) = 𝑥) |
| 12 | 9, 11 | eqtrd 2766 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = 𝑥) |
| 13 | 3 | fvexi 6831 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
| 14 | cayleylem1.h | . . . . . . . . 9 ⊢ 𝐻 = (SymGrp‘𝑋) | |
| 15 | 14 | symgid 19308 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ( I ↾ 𝑋) = (0g‘𝐻)) |
| 16 | 13, 15 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝑋) = (0g‘𝐻) |
| 17 | 16 | fveq1i 6818 | . . . . . 6 ⊢ (( I ↾ 𝑋)‘ 0 ) = ((0g‘𝐻)‘ 0 ) |
| 18 | fvresi 7102 | . . . . . . 7 ⊢ ( 0 ∈ 𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 ) | |
| 19 | 6, 18 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 ) |
| 20 | 17, 19 | eqtr3id 2780 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐻)‘ 0 ) = 0 ) |
| 21 | 12, 20 | eqeq12d 2747 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 ) ↔ 𝑥 = 0 )) |
| 22 | 1, 21 | imbitrid 244 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
| 23 | 22 | ralrimiva 3124 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
| 24 | cayleylem1.s | . . . 4 ⊢ 𝑆 = (Base‘𝐻) | |
| 25 | 3, 10, 4, 14, 24, 7 | cayleylem1 19319 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 26 | eqid 2731 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 27 | 3, 24, 4, 26 | ghmf1 19153 | . . 3 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
| 28 | 25, 27 | syl 17 | . 2 ⊢ (𝐺 ∈ Grp → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
| 29 | 23, 28 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ↦ cmpt 5167 I cid 5505 ↾ cres 5613 –1-1→wf1 6473 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Grpcgrp 18841 GrpHom cghm 19119 SymGrpcsymg 19276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-tset 17175 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-ghm 19120 df-ga 19197 df-symg 19277 |
| This theorem is referenced by: cayley 19321 |
| Copyright terms: Public domain | W3C validator |