MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleylem2 Structured version   Visualization version   GIF version

Theorem cayleylem2 19310
Description: Lemma for cayley 19311. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayleylem1.x 𝑋 = (Base‘𝐺)
cayleylem1.p + = (+g𝐺)
cayleylem1.u 0 = (0g𝐺)
cayleylem1.h 𝐻 = (SymGrp‘𝑋)
cayleylem1.s 𝑆 = (Base‘𝐻)
cayleylem1.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
Assertion
Ref Expression
cayleylem2 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Distinct variable groups:   𝑔,𝑎, +   𝐺,𝑎,𝑔   𝑔,𝐻   𝑋,𝑎,𝑔   0 ,𝑎
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)   0 (𝑔)

Proof of Theorem cayleylem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6825 . . . 4 ((𝐹𝑥) = (0g𝐻) → ((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ))
2 simpr 484 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 𝑥𝑋)
3 cayleylem1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
4 cayleylem1.u . . . . . . . . 9 0 = (0g𝐺)
53, 4grpidcl 18862 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
65adantr 480 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 0𝑋)
7 cayleylem1.f . . . . . . . 8 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
87, 3grplactval 18939 . . . . . . 7 ((𝑥𝑋0𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
92, 6, 8syl2anc 584 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
10 cayleylem1.p . . . . . . 7 + = (+g𝐺)
113, 10, 4grprid 18865 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥 + 0 ) = 𝑥)
129, 11eqtrd 2764 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = 𝑥)
133fvexi 6840 . . . . . . . 8 𝑋 ∈ V
14 cayleylem1.h . . . . . . . . 9 𝐻 = (SymGrp‘𝑋)
1514symgid 19298 . . . . . . . 8 (𝑋 ∈ V → ( I ↾ 𝑋) = (0g𝐻))
1613, 15ax-mp 5 . . . . . . 7 ( I ↾ 𝑋) = (0g𝐻)
1716fveq1i 6827 . . . . . 6 (( I ↾ 𝑋)‘ 0 ) = ((0g𝐻)‘ 0 )
18 fvresi 7113 . . . . . . 7 ( 0𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 )
196, 18syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 )
2017, 19eqtr3id 2778 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((0g𝐻)‘ 0 ) = 0 )
2112, 20eqeq12d 2745 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ) ↔ 𝑥 = 0 ))
221, 21imbitrid 244 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
2322ralrimiva 3121 . 2 (𝐺 ∈ Grp → ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
24 cayleylem1.s . . . 4 𝑆 = (Base‘𝐻)
253, 10, 4, 14, 24, 7cayleylem1 19309 . . 3 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
26 eqid 2729 . . . 4 (0g𝐻) = (0g𝐻)
273, 24, 4, 26ghmf1 19143 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2825, 27syl 17 . 2 (𝐺 ∈ Grp → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2923, 28mpbird 257 1 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cmpt 5176   I cid 5517  cres 5625  1-1wf1 6483  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830   GrpHom cghm 19109  SymGrpcsymg 19266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-tset 17198  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-ghm 19110  df-ga 19187  df-symg 19267
This theorem is referenced by:  cayley  19311
  Copyright terms: Public domain W3C validator