| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayleylem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cayley 19334. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cayleylem1.x | ⊢ 𝑋 = (Base‘𝐺) |
| cayleylem1.p | ⊢ + = (+g‘𝐺) |
| cayleylem1.u | ⊢ 0 = (0g‘𝐺) |
| cayleylem1.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
| cayleylem1.s | ⊢ 𝑆 = (Base‘𝐻) |
| cayleylem1.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| Ref | Expression |
|---|---|
| cayleylem2 | ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6830 | . . . 4 ⊢ ((𝐹‘𝑥) = (0g‘𝐻) → ((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 )) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 3 | cayleylem1.x | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | cayleylem1.u | . . . . . . . . 9 ⊢ 0 = (0g‘𝐺) | |
| 5 | 3, 4 | grpidcl 18886 | . . . . . . . 8 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 0 ∈ 𝑋) |
| 7 | cayleylem1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 8 | 7, 3 | grplactval 18963 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
| 9 | 2, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
| 10 | cayleylem1.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 11 | 3, 10, 4 | grprid 18889 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝑥 + 0 ) = 𝑥) |
| 12 | 9, 11 | eqtrd 2768 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = 𝑥) |
| 13 | 3 | fvexi 6845 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
| 14 | cayleylem1.h | . . . . . . . . 9 ⊢ 𝐻 = (SymGrp‘𝑋) | |
| 15 | 14 | symgid 19321 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ( I ↾ 𝑋) = (0g‘𝐻)) |
| 16 | 13, 15 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝑋) = (0g‘𝐻) |
| 17 | 16 | fveq1i 6832 | . . . . . 6 ⊢ (( I ↾ 𝑋)‘ 0 ) = ((0g‘𝐻)‘ 0 ) |
| 18 | fvresi 7116 | . . . . . . 7 ⊢ ( 0 ∈ 𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 ) | |
| 19 | 6, 18 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 ) |
| 20 | 17, 19 | eqtr3id 2782 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐻)‘ 0 ) = 0 ) |
| 21 | 12, 20 | eqeq12d 2749 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 ) ↔ 𝑥 = 0 )) |
| 22 | 1, 21 | imbitrid 244 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
| 23 | 22 | ralrimiva 3125 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
| 24 | cayleylem1.s | . . . 4 ⊢ 𝑆 = (Base‘𝐻) | |
| 25 | 3, 10, 4, 14, 24, 7 | cayleylem1 19332 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 26 | eqid 2733 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 27 | 3, 24, 4, 26 | ghmf1 19166 | . . 3 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
| 28 | 25, 27 | syl 17 | . 2 ⊢ (𝐺 ∈ Grp → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
| 29 | 23, 28 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ↦ cmpt 5176 I cid 5515 ↾ cres 5623 –1-1→wf1 6486 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 0gc0g 17350 Grpcgrp 18854 GrpHom cghm 19132 SymGrpcsymg 19289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-tset 17187 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-efmnd 18785 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-ghm 19133 df-ga 19210 df-symg 19290 |
| This theorem is referenced by: cayley 19334 |
| Copyright terms: Public domain | W3C validator |