![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cayleylem2 | Structured version Visualization version GIF version |
Description: Lemma for cayley 19332. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayleylem1.x | ⊢ 𝑋 = (Base‘𝐺) |
cayleylem1.p | ⊢ + = (+g‘𝐺) |
cayleylem1.u | ⊢ 0 = (0g‘𝐺) |
cayleylem1.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
cayleylem1.s | ⊢ 𝑆 = (Base‘𝐻) |
cayleylem1.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
Ref | Expression |
---|---|
cayleylem2 | ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6883 | . . . 4 ⊢ ((𝐹‘𝑥) = (0g‘𝐻) → ((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 )) | |
2 | simpr 484 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
3 | cayleylem1.x | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
4 | cayleylem1.u | . . . . . . . . 9 ⊢ 0 = (0g‘𝐺) | |
5 | 3, 4 | grpidcl 18893 | . . . . . . . 8 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → 0 ∈ 𝑋) |
7 | cayleylem1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
8 | 7, 3 | grplactval 18968 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
9 | 2, 6, 8 | syl2anc 583 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = (𝑥 + 0 )) |
10 | cayleylem1.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
11 | 3, 10, 4 | grprid 18896 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝑥 + 0 ) = 𝑥) |
12 | 9, 11 | eqtrd 2766 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘ 0 ) = 𝑥) |
13 | 3 | fvexi 6898 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
14 | cayleylem1.h | . . . . . . . . 9 ⊢ 𝐻 = (SymGrp‘𝑋) | |
15 | 14 | symgid 19319 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ( I ↾ 𝑋) = (0g‘𝐻)) |
16 | 13, 15 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝑋) = (0g‘𝐻) |
17 | 16 | fveq1i 6885 | . . . . . 6 ⊢ (( I ↾ 𝑋)‘ 0 ) = ((0g‘𝐻)‘ 0 ) |
18 | fvresi 7166 | . . . . . . 7 ⊢ ( 0 ∈ 𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 ) | |
19 | 6, 18 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 ) |
20 | 17, 19 | eqtr3id 2780 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐻)‘ 0 ) = 0 ) |
21 | 12, 20 | eqeq12d 2742 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((𝐹‘𝑥)‘ 0 ) = ((0g‘𝐻)‘ 0 ) ↔ 𝑥 = 0 )) |
22 | 1, 21 | imbitrid 243 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
23 | 22 | ralrimiva 3140 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 )) |
24 | cayleylem1.s | . . . 4 ⊢ 𝑆 = (Base‘𝐻) | |
25 | 3, 10, 4, 14, 24, 7 | cayleylem1 19330 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
26 | eqid 2726 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
27 | 3, 24, 4, 26 | ghmf1 19169 | . . 3 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
28 | 25, 27 | syl 17 | . 2 ⊢ (𝐺 ∈ Grp → (𝐹:𝑋–1-1→𝑆 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = (0g‘𝐻) → 𝑥 = 0 ))) |
29 | 23, 28 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ↦ cmpt 5224 I cid 5566 ↾ cres 5671 –1-1→wf1 6533 ‘cfv 6536 (class class class)co 7404 Basecbs 17151 +gcplusg 17204 0gc0g 17392 Grpcgrp 18861 GrpHom cghm 19136 SymGrpcsymg 19284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-tset 17223 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-efmnd 18792 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19048 df-ghm 19137 df-ga 19204 df-symg 19285 |
This theorem is referenced by: cayley 19332 |
Copyright terms: Public domain | W3C validator |