MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleylem2 Structured version   Visualization version   GIF version

Theorem cayleylem2 19331
Description: Lemma for cayley 19332. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayleylem1.x 𝑋 = (Base‘𝐺)
cayleylem1.p + = (+g𝐺)
cayleylem1.u 0 = (0g𝐺)
cayleylem1.h 𝐻 = (SymGrp‘𝑋)
cayleylem1.s 𝑆 = (Base‘𝐻)
cayleylem1.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
Assertion
Ref Expression
cayleylem2 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Distinct variable groups:   𝑔,𝑎, +   𝐺,𝑎,𝑔   𝑔,𝐻   𝑋,𝑎,𝑔   0 ,𝑎
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)   0 (𝑔)

Proof of Theorem cayleylem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6883 . . . 4 ((𝐹𝑥) = (0g𝐻) → ((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ))
2 simpr 484 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 𝑥𝑋)
3 cayleylem1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
4 cayleylem1.u . . . . . . . . 9 0 = (0g𝐺)
53, 4grpidcl 18893 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
65adantr 480 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 0𝑋)
7 cayleylem1.f . . . . . . . 8 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
87, 3grplactval 18968 . . . . . . 7 ((𝑥𝑋0𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
92, 6, 8syl2anc 583 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
10 cayleylem1.p . . . . . . 7 + = (+g𝐺)
113, 10, 4grprid 18896 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥 + 0 ) = 𝑥)
129, 11eqtrd 2766 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = 𝑥)
133fvexi 6898 . . . . . . . 8 𝑋 ∈ V
14 cayleylem1.h . . . . . . . . 9 𝐻 = (SymGrp‘𝑋)
1514symgid 19319 . . . . . . . 8 (𝑋 ∈ V → ( I ↾ 𝑋) = (0g𝐻))
1613, 15ax-mp 5 . . . . . . 7 ( I ↾ 𝑋) = (0g𝐻)
1716fveq1i 6885 . . . . . 6 (( I ↾ 𝑋)‘ 0 ) = ((0g𝐻)‘ 0 )
18 fvresi 7166 . . . . . . 7 ( 0𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 )
196, 18syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 )
2017, 19eqtr3id 2780 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((0g𝐻)‘ 0 ) = 0 )
2112, 20eqeq12d 2742 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ) ↔ 𝑥 = 0 ))
221, 21imbitrid 243 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
2322ralrimiva 3140 . 2 (𝐺 ∈ Grp → ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
24 cayleylem1.s . . . 4 𝑆 = (Base‘𝐻)
253, 10, 4, 14, 24, 7cayleylem1 19330 . . 3 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
26 eqid 2726 . . . 4 (0g𝐻) = (0g𝐻)
273, 24, 4, 26ghmf1 19169 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2825, 27syl 17 . 2 (𝐺 ∈ Grp → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2923, 28mpbird 257 1 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468  cmpt 5224   I cid 5566  cres 5671  1-1wf1 6533  cfv 6536  (class class class)co 7404  Basecbs 17151  +gcplusg 17204  0gc0g 17392  Grpcgrp 18861   GrpHom cghm 19136  SymGrpcsymg 19284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-tset 17223  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-efmnd 18792  df-grp 18864  df-minusg 18865  df-sbg 18866  df-subg 19048  df-ghm 19137  df-ga 19204  df-symg 19285
This theorem is referenced by:  cayley  19332
  Copyright terms: Public domain W3C validator