MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum2 Structured version   Visualization version   GIF version

Theorem dchrsum2 27179
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g 𝐺 = (DChr‘𝑁)
dchrsum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrsum.d 𝐷 = (Base‘𝐺)
dchrsum.1 1 = (0g𝐺)
dchrsum.x (𝜑𝑋𝐷)
dchrsum2.u 𝑈 = (Unit‘𝑍)
Assertion
Ref Expression
dchrsum2 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Distinct variable groups:   1 ,𝑎   𝜑,𝑎   𝑈,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝐺(𝑎)   𝑁(𝑎)

Proof of Theorem dchrsum2
Dummy variables 𝑘 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2741 . 2 ((ϕ‘𝑁) = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁) ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
2 eqeq2 2741 . 2 (0 = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = 0 ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
3 fveq1 6857 . . . . . 6 (𝑋 = 1 → (𝑋𝑎) = ( 1𝑎))
4 dchrsum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 dchrsum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 dchrsum.1 . . . . . . 7 1 = (0g𝐺)
7 dchrsum2.u . . . . . . 7 𝑈 = (Unit‘𝑍)
8 dchrsum.x . . . . . . . . 9 (𝜑𝑋𝐷)
9 dchrsum.d . . . . . . . . . 10 𝐷 = (Base‘𝐺)
104, 9dchrrcl 27151 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
118, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 480 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑁 ∈ ℕ)
13 simpr 484 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑎𝑈)
144, 5, 6, 7, 12, 13dchr1 27168 . . . . . 6 ((𝜑𝑎𝑈) → ( 1𝑎) = 1)
153, 14sylan9eqr 2786 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑋 = 1 ) → (𝑋𝑎) = 1)
1615an32s 652 . . . 4 (((𝜑𝑋 = 1 ) ∧ 𝑎𝑈) → (𝑋𝑎) = 1)
1716sumeq2dv 15668 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑎𝑈 1)
185, 7znunithash 21474 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
1911, 18syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑈) = (ϕ‘𝑁))
2011phicld 16742 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
2120nnnn0d 12503 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
2219, 21eqeltrd 2828 . . . . . . 7 (𝜑 → (♯‘𝑈) ∈ ℕ0)
237fvexi 6872 . . . . . . . 8 𝑈 ∈ V
24 hashclb 14323 . . . . . . . 8 (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0))
2523, 24ax-mp 5 . . . . . . 7 (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)
2622, 25sylibr 234 . . . . . 6 (𝜑𝑈 ∈ Fin)
27 ax-1cn 11126 . . . . . 6 1 ∈ ℂ
28 fsumconst 15756 . . . . . 6 ((𝑈 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎𝑈 1 = ((♯‘𝑈) · 1))
2926, 27, 28sylancl 586 . . . . 5 (𝜑 → Σ𝑎𝑈 1 = ((♯‘𝑈) · 1))
3019oveq1d 7402 . . . . 5 (𝜑 → ((♯‘𝑈) · 1) = ((ϕ‘𝑁) · 1))
3120nncnd 12202 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
3231mulridd 11191 . . . . 5 (𝜑 → ((ϕ‘𝑁) · 1) = (ϕ‘𝑁))
3329, 30, 323eqtrd 2768 . . . 4 (𝜑 → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3433adantr 480 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3517, 34eqtrd 2764 . 2 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁))
364dchrabl 27165 . . . . . . . 8 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
37 ablgrp 19715 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
389, 6grpidcl 18897 . . . . . . . 8 (𝐺 ∈ Grp → 1𝐷)
3911, 36, 37, 384syl 19 . . . . . . 7 (𝜑1𝐷)
404, 5, 9, 7, 8, 39dchreq 27169 . . . . . 6 (𝜑 → (𝑋 = 1 ↔ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
4140notbid 318 . . . . 5 (𝜑 → (¬ 𝑋 = 1 ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
42 rexnal 3082 . . . . 5 (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘))
4341, 42bitr4di 289 . . . 4 (𝜑 → (¬ 𝑋 = 1 ↔ ∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘)))
44 df-ne 2926 . . . . . 6 ((𝑋𝑘) ≠ ( 1𝑘) ↔ ¬ (𝑋𝑘) = ( 1𝑘))
4511adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑁 ∈ ℕ)
46 simpr 484 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝑈)
474, 5, 6, 7, 45, 46dchr1 27168 . . . . . . . 8 ((𝜑𝑘𝑈) → ( 1𝑘) = 1)
4847neeq2d 2985 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) ↔ (𝑋𝑘) ≠ 1))
4926adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑈 ∈ Fin)
50 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
514, 5, 9, 50, 8dchrf 27153 . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
5250, 7unitss 20285 . . . . . . . . . . . . 13 𝑈 ⊆ (Base‘𝑍)
5352sseli 3942 . . . . . . . . . . . 12 (𝑎𝑈𝑎 ∈ (Base‘𝑍))
54 ffvelcdm 7053 . . . . . . . . . . . 12 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋𝑎) ∈ ℂ)
5551, 53, 54syl2an 596 . . . . . . . . . . 11 ((𝜑𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5655adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5749, 56fsumcl 15699 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) ∈ ℂ)
58 0cnd 11167 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 0 ∈ ℂ)
5951adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑋:(Base‘𝑍)⟶ℂ)
60 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘𝑈)
6152, 60sselid 3944 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘 ∈ (Base‘𝑍))
6259, 61ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ∈ ℂ)
63 subcl 11420 . . . . . . . . . 10 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋𝑘) − 1) ∈ ℂ)
6462, 27, 63sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ∈ ℂ)
65 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ≠ 1)
66 subeq0 11448 . . . . . . . . . . . 12 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6762, 27, 66sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6867necon3bid 2969 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) ≠ 0 ↔ (𝑋𝑘) ≠ 1))
6965, 68mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ≠ 0)
70 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘(.r𝑍)𝑥) = (𝑘(.r𝑍)𝑎))
7170fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑋‘(𝑘(.r𝑍)𝑥)) = (𝑋‘(𝑘(.r𝑍)𝑎)))
7271cbvsumv 15662 . . . . . . . . . . . . . 14 Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎))
734, 5, 9dchrmhm 27152 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
7473, 8sselid 3944 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7574ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7661adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑘 ∈ (Base‘𝑍))
7753adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑎 ∈ (Base‘𝑍))
78 eqid 2729 . . . . . . . . . . . . . . . . . 18 (mulGrp‘𝑍) = (mulGrp‘𝑍)
7978, 50mgpbas 20054 . . . . . . . . . . . . . . . . 17 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
80 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝑍) = (.r𝑍)
8178, 80mgpplusg 20053 . . . . . . . . . . . . . . . . 17 (.r𝑍) = (+g‘(mulGrp‘𝑍))
82 eqid 2729 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
83 cnfldmul 21272 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
8482, 83mgpplusg 20053 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
8579, 81, 84mhmlin 18720 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑘 ∈ (Base‘𝑍) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8675, 76, 77, 85syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8786sumeq2dv 15668 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
8872, 87eqtrid 2776 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
89 fveq2 6858 . . . . . . . . . . . . . 14 (𝑎 = (𝑘(.r𝑍)𝑥) → (𝑋𝑎) = (𝑋‘(𝑘(.r𝑍)𝑥)))
9011nnnn0d 12503 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
915zncrng 21454 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
92 crngring 20154 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
93 eqid 2729 . . . . . . . . . . . . . . . . 17 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
947, 93unitgrp 20292 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
9590, 91, 92, 944syl 19 . . . . . . . . . . . . . . 15 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
96 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐))) = (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))
977, 93unitgrpbas 20291 . . . . . . . . . . . . . . . 16 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
9893, 81ressplusg 17254 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ V → (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈)))
9923, 98ax-mp 5 . . . . . . . . . . . . . . . 16 (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈))
10096, 97, 99grplactf1o 18976 . . . . . . . . . . . . . . 15 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑘𝑈) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10195, 60, 100syl2an2r 685 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10296, 97grplactval 18974 . . . . . . . . . . . . . . 15 ((𝑘𝑈𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10360, 102sylan 580 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10489, 49, 101, 103, 56fsumf1o 15689 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)))
10549, 62, 56fsummulc2 15750 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
10688, 104, 1053eqtr4rd 2775 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
10757mullidd 11192 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (1 · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
108106, 107oveq12d 7405 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)))
10957subidd 11521 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)) = 0)
110108, 109eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = 0)
111 1cnd 11169 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 1 ∈ ℂ)
11262, 111, 57subdird 11635 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))))
11364mul01d 11373 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · 0) = 0)
114110, 112, 1133eqtr4d 2774 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) − 1) · 0))
11557, 58, 64, 69, 114mulcanad 11813 . . . . . . . 8 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = 0)
116115expr 456 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
11748, 116sylbid 240 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
11844, 117biimtrrid 243 . . . . 5 ((𝜑𝑘𝑈) → (¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
119118rexlimdva 3134 . . . 4 (𝜑 → (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
12043, 119sylbid 240 . . 3 (𝜑 → (¬ 𝑋 = 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
121120imp 406 . 2 ((𝜑 ∧ ¬ 𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = 0)
1221, 2, 35, 121ifbothda 4527 1 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  ifcif 4488  cmpt 5188  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  cmin 11405  cn 12186  0cn0 12442  chash 14295  Σcsu 15652  ϕcphi 16734  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   MndHom cmhm 18708  Grpcgrp 18865  Abelcabl 19711  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143  Unitcui 20264  fldccnfld 21264  ℤ/nczn 21412  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-dchr 27144
This theorem is referenced by:  dchrsum  27180
  Copyright terms: Public domain W3C validator