MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum2 Structured version   Visualization version   GIF version

Theorem dchrsum2 26149
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g 𝐺 = (DChr‘𝑁)
dchrsum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrsum.d 𝐷 = (Base‘𝐺)
dchrsum.1 1 = (0g𝐺)
dchrsum.x (𝜑𝑋𝐷)
dchrsum2.u 𝑈 = (Unit‘𝑍)
Assertion
Ref Expression
dchrsum2 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Distinct variable groups:   1 ,𝑎   𝜑,𝑎   𝑈,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝐺(𝑎)   𝑁(𝑎)

Proof of Theorem dchrsum2
Dummy variables 𝑘 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2749 . 2 ((ϕ‘𝑁) = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁) ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
2 eqeq2 2749 . 2 (0 = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = 0 ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
3 fveq1 6716 . . . . . 6 (𝑋 = 1 → (𝑋𝑎) = ( 1𝑎))
4 dchrsum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 dchrsum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 dchrsum.1 . . . . . . 7 1 = (0g𝐺)
7 dchrsum2.u . . . . . . 7 𝑈 = (Unit‘𝑍)
8 dchrsum.x . . . . . . . . 9 (𝜑𝑋𝐷)
9 dchrsum.d . . . . . . . . . 10 𝐷 = (Base‘𝐺)
104, 9dchrrcl 26121 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
118, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 484 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑁 ∈ ℕ)
13 simpr 488 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑎𝑈)
144, 5, 6, 7, 12, 13dchr1 26138 . . . . . 6 ((𝜑𝑎𝑈) → ( 1𝑎) = 1)
153, 14sylan9eqr 2800 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑋 = 1 ) → (𝑋𝑎) = 1)
1615an32s 652 . . . 4 (((𝜑𝑋 = 1 ) ∧ 𝑎𝑈) → (𝑋𝑎) = 1)
1716sumeq2dv 15267 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑎𝑈 1)
185, 7znunithash 20529 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
1911, 18syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑈) = (ϕ‘𝑁))
2011phicld 16325 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
2120nnnn0d 12150 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
2219, 21eqeltrd 2838 . . . . . . 7 (𝜑 → (♯‘𝑈) ∈ ℕ0)
237fvexi 6731 . . . . . . . 8 𝑈 ∈ V
24 hashclb 13925 . . . . . . . 8 (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0))
2523, 24ax-mp 5 . . . . . . 7 (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)
2622, 25sylibr 237 . . . . . 6 (𝜑𝑈 ∈ Fin)
27 ax-1cn 10787 . . . . . 6 1 ∈ ℂ
28 fsumconst 15354 . . . . . 6 ((𝑈 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎𝑈 1 = ((♯‘𝑈) · 1))
2926, 27, 28sylancl 589 . . . . 5 (𝜑 → Σ𝑎𝑈 1 = ((♯‘𝑈) · 1))
3019oveq1d 7228 . . . . 5 (𝜑 → ((♯‘𝑈) · 1) = ((ϕ‘𝑁) · 1))
3120nncnd 11846 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
3231mulid1d 10850 . . . . 5 (𝜑 → ((ϕ‘𝑁) · 1) = (ϕ‘𝑁))
3329, 30, 323eqtrd 2781 . . . 4 (𝜑 → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3433adantr 484 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3517, 34eqtrd 2777 . 2 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁))
364dchrabl 26135 . . . . . . . 8 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
37 ablgrp 19175 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
389, 6grpidcl 18395 . . . . . . . 8 (𝐺 ∈ Grp → 1𝐷)
3911, 36, 37, 384syl 19 . . . . . . 7 (𝜑1𝐷)
404, 5, 9, 7, 8, 39dchreq 26139 . . . . . 6 (𝜑 → (𝑋 = 1 ↔ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
4140notbid 321 . . . . 5 (𝜑 → (¬ 𝑋 = 1 ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
42 rexnal 3160 . . . . 5 (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘))
4341, 42bitr4di 292 . . . 4 (𝜑 → (¬ 𝑋 = 1 ↔ ∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘)))
44 df-ne 2941 . . . . . 6 ((𝑋𝑘) ≠ ( 1𝑘) ↔ ¬ (𝑋𝑘) = ( 1𝑘))
4511adantr 484 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑁 ∈ ℕ)
46 simpr 488 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝑈)
474, 5, 6, 7, 45, 46dchr1 26138 . . . . . . . 8 ((𝜑𝑘𝑈) → ( 1𝑘) = 1)
4847neeq2d 3001 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) ↔ (𝑋𝑘) ≠ 1))
4926adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑈 ∈ Fin)
50 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
514, 5, 9, 50, 8dchrf 26123 . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
5250, 7unitss 19678 . . . . . . . . . . . . 13 𝑈 ⊆ (Base‘𝑍)
5352sseli 3896 . . . . . . . . . . . 12 (𝑎𝑈𝑎 ∈ (Base‘𝑍))
54 ffvelrn 6902 . . . . . . . . . . . 12 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋𝑎) ∈ ℂ)
5551, 53, 54syl2an 599 . . . . . . . . . . 11 ((𝜑𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5655adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5749, 56fsumcl 15297 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) ∈ ℂ)
58 0cnd 10826 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 0 ∈ ℂ)
5951adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑋:(Base‘𝑍)⟶ℂ)
60 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘𝑈)
6152, 60sseldi 3899 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘 ∈ (Base‘𝑍))
6259, 61ffvelrnd 6905 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ∈ ℂ)
63 subcl 11077 . . . . . . . . . 10 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋𝑘) − 1) ∈ ℂ)
6462, 27, 63sylancl 589 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ∈ ℂ)
65 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ≠ 1)
66 subeq0 11104 . . . . . . . . . . . 12 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6762, 27, 66sylancl 589 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6867necon3bid 2985 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) ≠ 0 ↔ (𝑋𝑘) ≠ 1))
6965, 68mpbird 260 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ≠ 0)
70 oveq2 7221 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘(.r𝑍)𝑥) = (𝑘(.r𝑍)𝑎))
7170fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑋‘(𝑘(.r𝑍)𝑥)) = (𝑋‘(𝑘(.r𝑍)𝑎)))
7271cbvsumv 15260 . . . . . . . . . . . . . 14 Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎))
734, 5, 9dchrmhm 26122 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
7473, 8sseldi 3899 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7574ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7661adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑘 ∈ (Base‘𝑍))
7753adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑎 ∈ (Base‘𝑍))
78 eqid 2737 . . . . . . . . . . . . . . . . . 18 (mulGrp‘𝑍) = (mulGrp‘𝑍)
7978, 50mgpbas 19510 . . . . . . . . . . . . . . . . 17 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
80 eqid 2737 . . . . . . . . . . . . . . . . . 18 (.r𝑍) = (.r𝑍)
8178, 80mgpplusg 19508 . . . . . . . . . . . . . . . . 17 (.r𝑍) = (+g‘(mulGrp‘𝑍))
82 eqid 2737 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
83 cnfldmul 20369 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
8482, 83mgpplusg 19508 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
8579, 81, 84mhmlin 18225 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑘 ∈ (Base‘𝑍) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8675, 76, 77, 85syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8786sumeq2dv 15267 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
8872, 87syl5eq 2790 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
89 fveq2 6717 . . . . . . . . . . . . . 14 (𝑎 = (𝑘(.r𝑍)𝑥) → (𝑋𝑎) = (𝑋‘(𝑘(.r𝑍)𝑥)))
9011nnnn0d 12150 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
915zncrng 20509 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
92 crngring 19574 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
93 eqid 2737 . . . . . . . . . . . . . . . . 17 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
947, 93unitgrp 19685 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
9590, 91, 92, 944syl 19 . . . . . . . . . . . . . . 15 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
96 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐))) = (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))
977, 93unitgrpbas 19684 . . . . . . . . . . . . . . . 16 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
9893, 81ressplusg 16834 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ V → (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈)))
9923, 98ax-mp 5 . . . . . . . . . . . . . . . 16 (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈))
10096, 97, 99grplactf1o 18467 . . . . . . . . . . . . . . 15 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑘𝑈) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10195, 60, 100syl2an2r 685 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10296, 97grplactval 18465 . . . . . . . . . . . . . . 15 ((𝑘𝑈𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10360, 102sylan 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10489, 49, 101, 103, 56fsumf1o 15287 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)))
10549, 62, 56fsummulc2 15348 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
10688, 104, 1053eqtr4rd 2788 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
10757mulid2d 10851 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (1 · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
108106, 107oveq12d 7231 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)))
10957subidd 11177 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)) = 0)
110108, 109eqtrd 2777 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = 0)
111 1cnd 10828 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 1 ∈ ℂ)
11262, 111, 57subdird 11289 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))))
11364mul01d 11031 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · 0) = 0)
114110, 112, 1133eqtr4d 2787 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) − 1) · 0))
11557, 58, 64, 69, 114mulcanad 11467 . . . . . . . 8 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = 0)
116115expr 460 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
11748, 116sylbid 243 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
11844, 117syl5bir 246 . . . . 5 ((𝜑𝑘𝑈) → (¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
119118rexlimdva 3203 . . . 4 (𝜑 → (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
12043, 119sylbid 243 . . 3 (𝜑 → (¬ 𝑋 = 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
121120imp 410 . 2 ((𝜑 ∧ ¬ 𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = 0)
1221, 2, 35, 121ifbothda 4477 1 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  ifcif 4439  cmpt 5135  wf 6376  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  Fincfn 8626  cc 10727  0cc0 10729  1c1 10730   · cmul 10734  cmin 11062  cn 11830  0cn0 12090  chash 13896  Σcsu 15249  ϕcphi 16317  Basecbs 16760  s cress 16784  +gcplusg 16802  .rcmulr 16803  0gc0g 16944   MndHom cmhm 18216  Grpcgrp 18365  Abelcabl 19171  mulGrpcmgp 19504  Ringcrg 19562  CRingccrg 19563  Unitcui 19657  fldccnfld 20363  ℤ/nczn 20469  DChrcdchr 26113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-ec 8393  df-qs 8397  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-dvds 15816  df-gcd 16054  df-phi 16319  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-0g 16946  df-imas 17013  df-qus 17014  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-nsg 18541  df-eqg 18542  df-ghm 18620  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-rnghom 19735  df-subrg 19798  df-lmod 19901  df-lss 19969  df-lsp 20009  df-sra 20209  df-rgmod 20210  df-lidl 20211  df-rsp 20212  df-2idl 20270  df-cnfld 20364  df-zring 20436  df-zrh 20470  df-zn 20473  df-dchr 26114
This theorem is referenced by:  dchrsum  26150
  Copyright terms: Public domain W3C validator