MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum2 Structured version   Visualization version   GIF version

Theorem dchrsum2 27186
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g 𝐺 = (DChr‘𝑁)
dchrsum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrsum.d 𝐷 = (Base‘𝐺)
dchrsum.1 1 = (0g𝐺)
dchrsum.x (𝜑𝑋𝐷)
dchrsum2.u 𝑈 = (Unit‘𝑍)
Assertion
Ref Expression
dchrsum2 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Distinct variable groups:   1 ,𝑎   𝜑,𝑎   𝑈,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝐺(𝑎)   𝑁(𝑎)

Proof of Theorem dchrsum2
Dummy variables 𝑘 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2742 . 2 ((ϕ‘𝑁) = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁) ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
2 eqeq2 2742 . 2 (0 = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = 0 ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
3 fveq1 6860 . . . . . 6 (𝑋 = 1 → (𝑋𝑎) = ( 1𝑎))
4 dchrsum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 dchrsum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 dchrsum.1 . . . . . . 7 1 = (0g𝐺)
7 dchrsum2.u . . . . . . 7 𝑈 = (Unit‘𝑍)
8 dchrsum.x . . . . . . . . 9 (𝜑𝑋𝐷)
9 dchrsum.d . . . . . . . . . 10 𝐷 = (Base‘𝐺)
104, 9dchrrcl 27158 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
118, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 480 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑁 ∈ ℕ)
13 simpr 484 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑎𝑈)
144, 5, 6, 7, 12, 13dchr1 27175 . . . . . 6 ((𝜑𝑎𝑈) → ( 1𝑎) = 1)
153, 14sylan9eqr 2787 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑋 = 1 ) → (𝑋𝑎) = 1)
1615an32s 652 . . . 4 (((𝜑𝑋 = 1 ) ∧ 𝑎𝑈) → (𝑋𝑎) = 1)
1716sumeq2dv 15675 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑎𝑈 1)
185, 7znunithash 21481 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
1911, 18syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑈) = (ϕ‘𝑁))
2011phicld 16749 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
2120nnnn0d 12510 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
2219, 21eqeltrd 2829 . . . . . . 7 (𝜑 → (♯‘𝑈) ∈ ℕ0)
237fvexi 6875 . . . . . . . 8 𝑈 ∈ V
24 hashclb 14330 . . . . . . . 8 (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0))
2523, 24ax-mp 5 . . . . . . 7 (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)
2622, 25sylibr 234 . . . . . 6 (𝜑𝑈 ∈ Fin)
27 ax-1cn 11133 . . . . . 6 1 ∈ ℂ
28 fsumconst 15763 . . . . . 6 ((𝑈 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎𝑈 1 = ((♯‘𝑈) · 1))
2926, 27, 28sylancl 586 . . . . 5 (𝜑 → Σ𝑎𝑈 1 = ((♯‘𝑈) · 1))
3019oveq1d 7405 . . . . 5 (𝜑 → ((♯‘𝑈) · 1) = ((ϕ‘𝑁) · 1))
3120nncnd 12209 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
3231mulridd 11198 . . . . 5 (𝜑 → ((ϕ‘𝑁) · 1) = (ϕ‘𝑁))
3329, 30, 323eqtrd 2769 . . . 4 (𝜑 → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3433adantr 480 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3517, 34eqtrd 2765 . 2 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁))
364dchrabl 27172 . . . . . . . 8 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
37 ablgrp 19722 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
389, 6grpidcl 18904 . . . . . . . 8 (𝐺 ∈ Grp → 1𝐷)
3911, 36, 37, 384syl 19 . . . . . . 7 (𝜑1𝐷)
404, 5, 9, 7, 8, 39dchreq 27176 . . . . . 6 (𝜑 → (𝑋 = 1 ↔ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
4140notbid 318 . . . . 5 (𝜑 → (¬ 𝑋 = 1 ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
42 rexnal 3083 . . . . 5 (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘))
4341, 42bitr4di 289 . . . 4 (𝜑 → (¬ 𝑋 = 1 ↔ ∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘)))
44 df-ne 2927 . . . . . 6 ((𝑋𝑘) ≠ ( 1𝑘) ↔ ¬ (𝑋𝑘) = ( 1𝑘))
4511adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑁 ∈ ℕ)
46 simpr 484 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝑈)
474, 5, 6, 7, 45, 46dchr1 27175 . . . . . . . 8 ((𝜑𝑘𝑈) → ( 1𝑘) = 1)
4847neeq2d 2986 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) ↔ (𝑋𝑘) ≠ 1))
4926adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑈 ∈ Fin)
50 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
514, 5, 9, 50, 8dchrf 27160 . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
5250, 7unitss 20292 . . . . . . . . . . . . 13 𝑈 ⊆ (Base‘𝑍)
5352sseli 3945 . . . . . . . . . . . 12 (𝑎𝑈𝑎 ∈ (Base‘𝑍))
54 ffvelcdm 7056 . . . . . . . . . . . 12 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋𝑎) ∈ ℂ)
5551, 53, 54syl2an 596 . . . . . . . . . . 11 ((𝜑𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5655adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5749, 56fsumcl 15706 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) ∈ ℂ)
58 0cnd 11174 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 0 ∈ ℂ)
5951adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑋:(Base‘𝑍)⟶ℂ)
60 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘𝑈)
6152, 60sselid 3947 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘 ∈ (Base‘𝑍))
6259, 61ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ∈ ℂ)
63 subcl 11427 . . . . . . . . . 10 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋𝑘) − 1) ∈ ℂ)
6462, 27, 63sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ∈ ℂ)
65 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ≠ 1)
66 subeq0 11455 . . . . . . . . . . . 12 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6762, 27, 66sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6867necon3bid 2970 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) ≠ 0 ↔ (𝑋𝑘) ≠ 1))
6965, 68mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ≠ 0)
70 oveq2 7398 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘(.r𝑍)𝑥) = (𝑘(.r𝑍)𝑎))
7170fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑋‘(𝑘(.r𝑍)𝑥)) = (𝑋‘(𝑘(.r𝑍)𝑎)))
7271cbvsumv 15669 . . . . . . . . . . . . . 14 Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎))
734, 5, 9dchrmhm 27159 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
7473, 8sselid 3947 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7574ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7661adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑘 ∈ (Base‘𝑍))
7753adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑎 ∈ (Base‘𝑍))
78 eqid 2730 . . . . . . . . . . . . . . . . . 18 (mulGrp‘𝑍) = (mulGrp‘𝑍)
7978, 50mgpbas 20061 . . . . . . . . . . . . . . . . 17 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
80 eqid 2730 . . . . . . . . . . . . . . . . . 18 (.r𝑍) = (.r𝑍)
8178, 80mgpplusg 20060 . . . . . . . . . . . . . . . . 17 (.r𝑍) = (+g‘(mulGrp‘𝑍))
82 eqid 2730 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
83 cnfldmul 21279 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
8482, 83mgpplusg 20060 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
8579, 81, 84mhmlin 18727 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑘 ∈ (Base‘𝑍) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8675, 76, 77, 85syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8786sumeq2dv 15675 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
8872, 87eqtrid 2777 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
89 fveq2 6861 . . . . . . . . . . . . . 14 (𝑎 = (𝑘(.r𝑍)𝑥) → (𝑋𝑎) = (𝑋‘(𝑘(.r𝑍)𝑥)))
9011nnnn0d 12510 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
915zncrng 21461 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
92 crngring 20161 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
93 eqid 2730 . . . . . . . . . . . . . . . . 17 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
947, 93unitgrp 20299 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
9590, 91, 92, 944syl 19 . . . . . . . . . . . . . . 15 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
96 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐))) = (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))
977, 93unitgrpbas 20298 . . . . . . . . . . . . . . . 16 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
9893, 81ressplusg 17261 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ V → (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈)))
9923, 98ax-mp 5 . . . . . . . . . . . . . . . 16 (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈))
10096, 97, 99grplactf1o 18983 . . . . . . . . . . . . . . 15 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑘𝑈) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10195, 60, 100syl2an2r 685 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10296, 97grplactval 18981 . . . . . . . . . . . . . . 15 ((𝑘𝑈𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10360, 102sylan 580 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10489, 49, 101, 103, 56fsumf1o 15696 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)))
10549, 62, 56fsummulc2 15757 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
10688, 104, 1053eqtr4rd 2776 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
10757mullidd 11199 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (1 · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
108106, 107oveq12d 7408 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)))
10957subidd 11528 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)) = 0)
110108, 109eqtrd 2765 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = 0)
111 1cnd 11176 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 1 ∈ ℂ)
11262, 111, 57subdird 11642 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))))
11364mul01d 11380 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · 0) = 0)
114110, 112, 1133eqtr4d 2775 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) − 1) · 0))
11557, 58, 64, 69, 114mulcanad 11820 . . . . . . . 8 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = 0)
116115expr 456 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
11748, 116sylbid 240 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
11844, 117biimtrrid 243 . . . . 5 ((𝜑𝑘𝑈) → (¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
119118rexlimdva 3135 . . . 4 (𝜑 → (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
12043, 119sylbid 240 . . 3 (𝜑 → (¬ 𝑋 = 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
121120imp 406 . 2 ((𝜑 ∧ ¬ 𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = 0)
1221, 2, 35, 121ifbothda 4530 1 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  ifcif 4491  cmpt 5191  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   · cmul 11080  cmin 11412  cn 12193  0cn0 12449  chash 14302  Σcsu 15659  ϕcphi 16741  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   MndHom cmhm 18715  Grpcgrp 18872  Abelcabl 19718  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  Unitcui 20271  fldccnfld 21271  ℤ/nczn 21419  DChrcdchr 27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423  df-dchr 27151
This theorem is referenced by:  dchrsum  27187
  Copyright terms: Public domain W3C validator