MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactfval Structured version   Visualization version   GIF version

Theorem grplactfval 19024
Description: The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
grplactfval (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactfval
StepHypRef Expression
1 oveq1 7412 . . 3 (𝑔 = 𝐴 → (𝑔 + 𝑎) = (𝐴 + 𝑎))
21mpteq2dv 5215 . 2 (𝑔 = 𝐴 → (𝑎𝑋 ↦ (𝑔 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
3 grplact.1 . 2 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
4 grplact.2 . 2 𝑋 = (Base‘𝐺)
52, 3, 4mptfvmpt 7220 1 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cmpt 5201  cfv 6531  (class class class)co 7405  Basecbs 17228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408
This theorem is referenced by:  grplactval  19025  grplactcnv  19026  eqglact  19162  eqgen  19164  tgplacthmeo  24041  tgpconncompeqg  24050
  Copyright terms: Public domain W3C validator