![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplactfval | Structured version Visualization version GIF version |
Description: The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.) |
Ref | Expression |
---|---|
grplact.1 | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
grplact.2 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
grplactfval | ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7423 | . . 3 ⊢ (𝑔 = 𝐴 → (𝑔 + 𝑎) = (𝐴 + 𝑎)) | |
2 | 1 | mpteq2dv 5247 | . 2 ⊢ (𝑔 = 𝐴 → (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
3 | grplact.1 | . 2 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
4 | grplact.2 | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 2, 3, 4 | mptfvmpt 7237 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5228 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 |
This theorem is referenced by: grplactval 19032 grplactcnv 19033 eqglact 19169 eqgen 19171 tgplacthmeo 24095 tgpconncompeqg 24104 |
Copyright terms: Public domain | W3C validator |