MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumdchr2 Structured version   Visualization version   GIF version

Theorem sumdchr2 25528
Description: Lemma for sumdchr 25530. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g 𝐺 = (DChr‘𝑁)
sumdchr.d 𝐷 = (Base‘𝐺)
sumdchr2.z 𝑍 = (ℤ/nℤ‘𝑁)
sumdchr2.1 1 = (1r𝑍)
sumdchr2.b 𝐵 = (Base‘𝑍)
sumdchr2.n (𝜑𝑁 ∈ ℕ)
sumdchr2.x (𝜑𝐴𝐵)
Assertion
Ref Expression
sumdchr2 (𝜑 → Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0))
Distinct variable groups:   𝑥, 1   𝑥,𝐴   𝑥,𝐷   𝑥,𝑁   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑍(𝑥)

Proof of Theorem sumdchr2
Dummy variables 𝑦 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2806 . 2 ((♯‘𝐷) = if(𝐴 = 1 , (♯‘𝐷), 0) → (Σ𝑥𝐷 (𝑥𝐴) = (♯‘𝐷) ↔ Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)))
2 eqeq2 2806 . 2 (0 = if(𝐴 = 1 , (♯‘𝐷), 0) → (Σ𝑥𝐷 (𝑥𝐴) = 0 ↔ Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)))
3 fveq2 6538 . . . . . 6 (𝐴 = 1 → (𝑥𝐴) = (𝑥1 ))
4 sumdchr.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
5 sumdchr2.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
6 sumdchr.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
74, 5, 6dchrmhm 25499 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
8 simpr 485 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥𝐷)
97, 8sseldi 3887 . . . . . . 7 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
10 eqid 2795 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
11 sumdchr2.1 . . . . . . . . 9 1 = (1r𝑍)
1210, 11ringidval 18943 . . . . . . . 8 1 = (0g‘(mulGrp‘𝑍))
13 eqid 2795 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
14 cnfld1 20252 . . . . . . . . 9 1 = (1r‘ℂfld)
1513, 14ringidval 18943 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
1612, 15mhm0 17782 . . . . . . 7 (𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑥1 ) = 1)
179, 16syl 17 . . . . . 6 ((𝜑𝑥𝐷) → (𝑥1 ) = 1)
183, 17sylan9eqr 2853 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝐴 = 1 ) → (𝑥𝐴) = 1)
1918an32s 648 . . . 4 (((𝜑𝐴 = 1 ) ∧ 𝑥𝐷) → (𝑥𝐴) = 1)
2019sumeq2dv 14893 . . 3 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = Σ𝑥𝐷 1)
21 sumdchr2.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
224, 6dchrfi 25513 . . . . . . 7 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
2321, 22syl 17 . . . . . 6 (𝜑𝐷 ∈ Fin)
24 ax-1cn 10441 . . . . . 6 1 ∈ ℂ
25 fsumconst 14978 . . . . . 6 ((𝐷 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝐷 1 = ((♯‘𝐷) · 1))
2623, 24, 25sylancl 586 . . . . 5 (𝜑 → Σ𝑥𝐷 1 = ((♯‘𝐷) · 1))
27 hashcl 13567 . . . . . . . 8 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
2821, 22, 273syl 18 . . . . . . 7 (𝜑 → (♯‘𝐷) ∈ ℕ0)
2928nn0cnd 11805 . . . . . 6 (𝜑 → (♯‘𝐷) ∈ ℂ)
3029mulid1d 10504 . . . . 5 (𝜑 → ((♯‘𝐷) · 1) = (♯‘𝐷))
3126, 30eqtrd 2831 . . . 4 (𝜑 → Σ𝑥𝐷 1 = (♯‘𝐷))
3231adantr 481 . . 3 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 1 = (♯‘𝐷))
3320, 32eqtrd 2831 . 2 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = (♯‘𝐷))
34 df-ne 2985 . . 3 (𝐴1 ↔ ¬ 𝐴 = 1 )
35 sumdchr2.b . . . . 5 𝐵 = (Base‘𝑍)
3621adantr 481 . . . . 5 ((𝜑𝐴1 ) → 𝑁 ∈ ℕ)
37 simpr 485 . . . . 5 ((𝜑𝐴1 ) → 𝐴1 )
38 sumdchr2.x . . . . . 6 (𝜑𝐴𝐵)
3938adantr 481 . . . . 5 ((𝜑𝐴1 ) → 𝐴𝐵)
404, 5, 6, 35, 11, 36, 37, 39dchrpt 25525 . . . 4 ((𝜑𝐴1 ) → ∃𝑦𝐷 (𝑦𝐴) ≠ 1)
4136adantr 481 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑁 ∈ ℕ)
4241, 22syl 17 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐷 ∈ Fin)
43 simpr 485 . . . . . . . 8 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥𝐷)
444, 5, 6, 35, 43dchrf 25500 . . . . . . 7 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥:𝐵⟶ℂ)
4539adantr 481 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐴𝐵)
4645adantr 481 . . . . . . 7 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝐴𝐵)
4744, 46ffvelrnd 6717 . . . . . 6 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → (𝑥𝐴) ∈ ℂ)
4842, 47fsumcl 14923 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) ∈ ℂ)
49 0cnd 10480 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 0 ∈ ℂ)
50 simprl 767 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑦𝐷)
514, 5, 6, 35, 50dchrf 25500 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑦:𝐵⟶ℂ)
5251, 45ffvelrnd 6717 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (𝑦𝐴) ∈ ℂ)
53 subcl 10732 . . . . . 6 (((𝑦𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦𝐴) − 1) ∈ ℂ)
5452, 24, 53sylancl 586 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) − 1) ∈ ℂ)
55 simprr 769 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (𝑦𝐴) ≠ 1)
56 subeq0 10760 . . . . . . . 8 (((𝑦𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦𝐴) − 1) = 0 ↔ (𝑦𝐴) = 1))
5752, 24, 56sylancl 586 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) = 0 ↔ (𝑦𝐴) = 1))
5857necon3bid 3028 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) ≠ 0 ↔ (𝑦𝐴) ≠ 1))
5955, 58mpbird 258 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) − 1) ≠ 0)
60 oveq2 7024 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑦(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑥))
6160fveq1d 6540 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝑦(+g𝐺)𝑧)‘𝐴) = ((𝑦(+g𝐺)𝑥)‘𝐴))
6261cbvsumv 14886 . . . . . . . . . 10 Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴) = Σ𝑥𝐷 ((𝑦(+g𝐺)𝑥)‘𝐴)
63 eqid 2795 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
6450adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦𝐷)
654, 5, 6, 63, 64, 43dchrmul 25506 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → (𝑦(+g𝐺)𝑥) = (𝑦𝑓 · 𝑥))
6665fveq1d 6540 . . . . . . . . . . . 12 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦(+g𝐺)𝑥)‘𝐴) = ((𝑦𝑓 · 𝑥)‘𝐴))
6751adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦:𝐵⟶ℂ)
6867ffnd 6383 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦 Fn 𝐵)
6944ffnd 6383 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥 Fn 𝐵)
7035fvexi 6552 . . . . . . . . . . . . . 14 𝐵 ∈ V
7170a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝐵 ∈ V)
72 fnfvof 7281 . . . . . . . . . . . . 13 (((𝑦 Fn 𝐵𝑥 Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝐴𝐵)) → ((𝑦𝑓 · 𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7368, 69, 71, 46, 72syl22anc 835 . . . . . . . . . . . 12 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦𝑓 · 𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7466, 73eqtrd 2831 . . . . . . . . . . 11 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦(+g𝐺)𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7574sumeq2dv 14893 . . . . . . . . . 10 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 ((𝑦(+g𝐺)𝑥)‘𝐴) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
7662, 75syl5eq 2843 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
77 fveq1 6537 . . . . . . . . . 10 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝐴) = ((𝑦(+g𝐺)𝑧)‘𝐴))
784dchrabl 25512 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
79 ablgrp 18638 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8041, 78, 793syl 18 . . . . . . . . . . 11 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐺 ∈ Grp)
81 eqid 2795 . . . . . . . . . . . 12 (𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏))) = (𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))
8281, 6, 63grplactf1o 17960 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝐷) → ((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦):𝐷1-1-onto𝐷)
8380, 50, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦):𝐷1-1-onto𝐷)
8481, 6grplactval 17958 . . . . . . . . . . 11 ((𝑦𝐷𝑧𝐷) → (((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦)‘𝑧) = (𝑦(+g𝐺)𝑧))
8550, 84sylan 580 . . . . . . . . . 10 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑧𝐷) → (((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦)‘𝑧) = (𝑦(+g𝐺)𝑧))
8677, 42, 83, 85, 47fsumf1o 14913 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) = Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴))
8742, 52, 47fsummulc2 14972 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
8876, 86, 873eqtr4rd 2842 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 (𝑥𝐴))
8948mulid2d 10505 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (1 · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 (𝑥𝐴))
9088, 89oveq12d 7034 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))) = (Σ𝑥𝐷 (𝑥𝐴) − Σ𝑥𝐷 (𝑥𝐴)))
9148subidd 10833 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (Σ𝑥𝐷 (𝑥𝐴) − Σ𝑥𝐷 (𝑥𝐴)) = 0)
9290, 91eqtrd 2831 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))) = 0)
9324a1i 11 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 1 ∈ ℂ)
9452, 93, 48subdird 10945 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · Σ𝑥𝐷 (𝑥𝐴)) = (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))))
9554mul01d 10686 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · 0) = 0)
9692, 94, 953eqtr4d 2841 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · Σ𝑥𝐷 (𝑥𝐴)) = (((𝑦𝐴) − 1) · 0))
9748, 49, 54, 59, 96mulcanad 11123 . . . 4 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) = 0)
9840, 97rexlimddv 3254 . . 3 ((𝜑𝐴1 ) → Σ𝑥𝐷 (𝑥𝐴) = 0)
9934, 98sylan2br 594 . 2 ((𝜑 ∧ ¬ 𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = 0)
1001, 2, 33, 99ifbothda 4418 1 (𝜑 → Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wne 2984  Vcvv 3437  ifcif 4381  cmpt 5041   Fn wfn 6220  wf 6221  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  𝑓 cof 7265  Fincfn 8357  cc 10381  0cc0 10383  1c1 10384   · cmul 10388  cmin 10717  cn 11486  0cn0 11745  chash 13540  Σcsu 14876  Basecbs 16312  +gcplusg 16394   MndHom cmhm 17772  Grpcgrp 17861  Abelcabl 18634  mulGrpcmgp 18929  1rcur 18941  fldccnfld 20227  ℤ/nczn 20332  DChrcdchr 25490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-rpss 7307  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-omul 7958  df-er 8139  df-ec 8141  df-qs 8145  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-acn 9217  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-word 13708  df-concat 13769  df-s1 13794  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-dvds 15441  df-gcd 15677  df-prm 15845  df-phi 15932  df-pc 16003  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-qus 16611  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-nsg 18031  df-eqg 18032  df-ghm 18097  df-gim 18140  df-ga 18161  df-cntz 18188  df-oppg 18215  df-od 18387  df-gex 18388  df-pgp 18389  df-lsm 18491  df-pj1 18492  df-cmn 18635  df-abl 18636  df-cyg 18720  df-dprd 18834  df-dpj 18835  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-rnghom 19157  df-subrg 19223  df-lmod 19326  df-lss 19394  df-lsp 19434  df-sra 19634  df-rgmod 19635  df-lidl 19636  df-rsp 19637  df-2idl 19694  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-zring 20300  df-zrh 20333  df-zn 20336  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-0p 23954  df-limc 24147  df-dv 24148  df-ply 24461  df-idp 24462  df-coe 24463  df-dgr 24464  df-quot 24563  df-log 24821  df-cxp 24822  df-dchr 25491
This theorem is referenced by:  dchrhash  25529  sumdchr  25530
  Copyright terms: Public domain W3C validator