MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumdchr2 Structured version   Visualization version   GIF version

Theorem sumdchr2 27181
Description: Lemma for sumdchr 27183. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g 𝐺 = (DChr‘𝑁)
sumdchr.d 𝐷 = (Base‘𝐺)
sumdchr2.z 𝑍 = (ℤ/nℤ‘𝑁)
sumdchr2.1 1 = (1r𝑍)
sumdchr2.b 𝐵 = (Base‘𝑍)
sumdchr2.n (𝜑𝑁 ∈ ℕ)
sumdchr2.x (𝜑𝐴𝐵)
Assertion
Ref Expression
sumdchr2 (𝜑 → Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0))
Distinct variable groups:   𝑥, 1   𝑥,𝐴   𝑥,𝐷   𝑥,𝑁   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑍(𝑥)

Proof of Theorem sumdchr2
Dummy variables 𝑦 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2741 . 2 ((♯‘𝐷) = if(𝐴 = 1 , (♯‘𝐷), 0) → (Σ𝑥𝐷 (𝑥𝐴) = (♯‘𝐷) ↔ Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)))
2 eqeq2 2741 . 2 (0 = if(𝐴 = 1 , (♯‘𝐷), 0) → (Σ𝑥𝐷 (𝑥𝐴) = 0 ↔ Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)))
3 fveq2 6858 . . . . . 6 (𝐴 = 1 → (𝑥𝐴) = (𝑥1 ))
4 sumdchr.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
5 sumdchr2.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
6 sumdchr.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
74, 5, 6dchrmhm 27152 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
8 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥𝐷)
97, 8sselid 3944 . . . . . . 7 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
10 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
11 sumdchr2.1 . . . . . . . . 9 1 = (1r𝑍)
1210, 11ringidval 20092 . . . . . . . 8 1 = (0g‘(mulGrp‘𝑍))
13 eqid 2729 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
14 cnfld1 21305 . . . . . . . . 9 1 = (1r‘ℂfld)
1513, 14ringidval 20092 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
1612, 15mhm0 18721 . . . . . . 7 (𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑥1 ) = 1)
179, 16syl 17 . . . . . 6 ((𝜑𝑥𝐷) → (𝑥1 ) = 1)
183, 17sylan9eqr 2786 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝐴 = 1 ) → (𝑥𝐴) = 1)
1918an32s 652 . . . 4 (((𝜑𝐴 = 1 ) ∧ 𝑥𝐷) → (𝑥𝐴) = 1)
2019sumeq2dv 15668 . . 3 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = Σ𝑥𝐷 1)
21 sumdchr2.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
224, 6dchrfi 27166 . . . . . . 7 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
2321, 22syl 17 . . . . . 6 (𝜑𝐷 ∈ Fin)
24 ax-1cn 11126 . . . . . 6 1 ∈ ℂ
25 fsumconst 15756 . . . . . 6 ((𝐷 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝐷 1 = ((♯‘𝐷) · 1))
2623, 24, 25sylancl 586 . . . . 5 (𝜑 → Σ𝑥𝐷 1 = ((♯‘𝐷) · 1))
27 hashcl 14321 . . . . . . . 8 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
2821, 22, 273syl 18 . . . . . . 7 (𝜑 → (♯‘𝐷) ∈ ℕ0)
2928nn0cnd 12505 . . . . . 6 (𝜑 → (♯‘𝐷) ∈ ℂ)
3029mulridd 11191 . . . . 5 (𝜑 → ((♯‘𝐷) · 1) = (♯‘𝐷))
3126, 30eqtrd 2764 . . . 4 (𝜑 → Σ𝑥𝐷 1 = (♯‘𝐷))
3231adantr 480 . . 3 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 1 = (♯‘𝐷))
3320, 32eqtrd 2764 . 2 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = (♯‘𝐷))
34 df-ne 2926 . . 3 (𝐴1 ↔ ¬ 𝐴 = 1 )
35 sumdchr2.b . . . . 5 𝐵 = (Base‘𝑍)
3621adantr 480 . . . . 5 ((𝜑𝐴1 ) → 𝑁 ∈ ℕ)
37 simpr 484 . . . . 5 ((𝜑𝐴1 ) → 𝐴1 )
38 sumdchr2.x . . . . . 6 (𝜑𝐴𝐵)
3938adantr 480 . . . . 5 ((𝜑𝐴1 ) → 𝐴𝐵)
404, 5, 6, 35, 11, 36, 37, 39dchrpt 27178 . . . 4 ((𝜑𝐴1 ) → ∃𝑦𝐷 (𝑦𝐴) ≠ 1)
4136adantr 480 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑁 ∈ ℕ)
4241, 22syl 17 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐷 ∈ Fin)
43 simpr 484 . . . . . . . 8 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥𝐷)
444, 5, 6, 35, 43dchrf 27153 . . . . . . 7 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥:𝐵⟶ℂ)
4539adantr 480 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐴𝐵)
4645adantr 480 . . . . . . 7 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝐴𝐵)
4744, 46ffvelcdmd 7057 . . . . . 6 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → (𝑥𝐴) ∈ ℂ)
4842, 47fsumcl 15699 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) ∈ ℂ)
49 0cnd 11167 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 0 ∈ ℂ)
50 simprl 770 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑦𝐷)
514, 5, 6, 35, 50dchrf 27153 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑦:𝐵⟶ℂ)
5251, 45ffvelcdmd 7057 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (𝑦𝐴) ∈ ℂ)
53 subcl 11420 . . . . . 6 (((𝑦𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦𝐴) − 1) ∈ ℂ)
5452, 24, 53sylancl 586 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) − 1) ∈ ℂ)
55 simprr 772 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (𝑦𝐴) ≠ 1)
56 subeq0 11448 . . . . . . . 8 (((𝑦𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦𝐴) − 1) = 0 ↔ (𝑦𝐴) = 1))
5752, 24, 56sylancl 586 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) = 0 ↔ (𝑦𝐴) = 1))
5857necon3bid 2969 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) ≠ 0 ↔ (𝑦𝐴) ≠ 1))
5955, 58mpbird 257 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) − 1) ≠ 0)
60 oveq2 7395 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑦(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑥))
6160fveq1d 6860 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝑦(+g𝐺)𝑧)‘𝐴) = ((𝑦(+g𝐺)𝑥)‘𝐴))
6261cbvsumv 15662 . . . . . . . . . 10 Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴) = Σ𝑥𝐷 ((𝑦(+g𝐺)𝑥)‘𝐴)
63 eqid 2729 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
6450adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦𝐷)
654, 5, 6, 63, 64, 43dchrmul 27159 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → (𝑦(+g𝐺)𝑥) = (𝑦f · 𝑥))
6665fveq1d 6860 . . . . . . . . . . . 12 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦(+g𝐺)𝑥)‘𝐴) = ((𝑦f · 𝑥)‘𝐴))
6751adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦:𝐵⟶ℂ)
6867ffnd 6689 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦 Fn 𝐵)
6944ffnd 6689 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥 Fn 𝐵)
7035fvexi 6872 . . . . . . . . . . . . . 14 𝐵 ∈ V
7170a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝐵 ∈ V)
72 fnfvof 7670 . . . . . . . . . . . . 13 (((𝑦 Fn 𝐵𝑥 Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝐴𝐵)) → ((𝑦f · 𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7368, 69, 71, 46, 72syl22anc 838 . . . . . . . . . . . 12 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦f · 𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7466, 73eqtrd 2764 . . . . . . . . . . 11 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦(+g𝐺)𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7574sumeq2dv 15668 . . . . . . . . . 10 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 ((𝑦(+g𝐺)𝑥)‘𝐴) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
7662, 75eqtrid 2776 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
77 fveq1 6857 . . . . . . . . . 10 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝐴) = ((𝑦(+g𝐺)𝑧)‘𝐴))
784dchrabl 27165 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
79 ablgrp 19715 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8041, 78, 793syl 18 . . . . . . . . . . 11 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐺 ∈ Grp)
81 eqid 2729 . . . . . . . . . . . 12 (𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏))) = (𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))
8281, 6, 63grplactf1o 18976 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝐷) → ((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦):𝐷1-1-onto𝐷)
8380, 50, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦):𝐷1-1-onto𝐷)
8481, 6grplactval 18974 . . . . . . . . . . 11 ((𝑦𝐷𝑧𝐷) → (((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦)‘𝑧) = (𝑦(+g𝐺)𝑧))
8550, 84sylan 580 . . . . . . . . . 10 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑧𝐷) → (((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦)‘𝑧) = (𝑦(+g𝐺)𝑧))
8677, 42, 83, 85, 47fsumf1o 15689 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) = Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴))
8742, 52, 47fsummulc2 15750 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
8876, 86, 873eqtr4rd 2775 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 (𝑥𝐴))
8948mullidd 11192 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (1 · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 (𝑥𝐴))
9088, 89oveq12d 7405 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))) = (Σ𝑥𝐷 (𝑥𝐴) − Σ𝑥𝐷 (𝑥𝐴)))
9148subidd 11521 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (Σ𝑥𝐷 (𝑥𝐴) − Σ𝑥𝐷 (𝑥𝐴)) = 0)
9290, 91eqtrd 2764 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))) = 0)
9324a1i 11 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 1 ∈ ℂ)
9452, 93, 48subdird 11635 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · Σ𝑥𝐷 (𝑥𝐴)) = (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))))
9554mul01d 11373 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · 0) = 0)
9692, 94, 953eqtr4d 2774 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · Σ𝑥𝐷 (𝑥𝐴)) = (((𝑦𝐴) − 1) · 0))
9748, 49, 54, 59, 96mulcanad 11813 . . . 4 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) = 0)
9840, 97rexlimddv 3140 . . 3 ((𝜑𝐴1 ) → Σ𝑥𝐷 (𝑥𝐴) = 0)
9934, 98sylan2br 595 . 2 ((𝜑 ∧ ¬ 𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = 0)
1001, 2, 33, 99ifbothda 4527 1 (𝜑 → Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  ifcif 4488  cmpt 5188   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  f cof 7651  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  cmin 11405  cn 12186  0cn0 12442  chash 14295  Σcsu 15652  Basecbs 17179  +gcplusg 17220   MndHom cmhm 18708  Grpcgrp 18865  Abelcabl 19711  mulGrpcmgp 20049  1rcur 20090  fldccnfld 21264  ℤ/nczn 21412  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-ga 19222  df-cntz 19249  df-oppg 19278  df-od 19458  df-gex 19459  df-pgp 19460  df-lsm 19566  df-pj1 19567  df-cmn 19712  df-abl 19713  df-cyg 19808  df-dprd 19927  df-dpj 19928  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-0p 25571  df-limc 25767  df-dv 25768  df-ply 26093  df-idp 26094  df-coe 26095  df-dgr 26096  df-quot 26199  df-log 26465  df-cxp 26466  df-dchr 27144
This theorem is referenced by:  dchrhash  27182  sumdchr  27183
  Copyright terms: Public domain W3C validator