MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumdchr2 Structured version   Visualization version   GIF version

Theorem sumdchr2 26418
Description: Lemma for sumdchr 26420. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g 𝐺 = (DChr‘𝑁)
sumdchr.d 𝐷 = (Base‘𝐺)
sumdchr2.z 𝑍 = (ℤ/nℤ‘𝑁)
sumdchr2.1 1 = (1r𝑍)
sumdchr2.b 𝐵 = (Base‘𝑍)
sumdchr2.n (𝜑𝑁 ∈ ℕ)
sumdchr2.x (𝜑𝐴𝐵)
Assertion
Ref Expression
sumdchr2 (𝜑 → Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0))
Distinct variable groups:   𝑥, 1   𝑥,𝐴   𝑥,𝐷   𝑥,𝑁   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑍(𝑥)

Proof of Theorem sumdchr2
Dummy variables 𝑦 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2750 . 2 ((♯‘𝐷) = if(𝐴 = 1 , (♯‘𝐷), 0) → (Σ𝑥𝐷 (𝑥𝐴) = (♯‘𝐷) ↔ Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)))
2 eqeq2 2750 . 2 (0 = if(𝐴 = 1 , (♯‘𝐷), 0) → (Σ𝑥𝐷 (𝑥𝐴) = 0 ↔ Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)))
3 fveq2 6774 . . . . . 6 (𝐴 = 1 → (𝑥𝐴) = (𝑥1 ))
4 sumdchr.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
5 sumdchr2.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
6 sumdchr.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
74, 5, 6dchrmhm 26389 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
8 simpr 485 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥𝐷)
97, 8sselid 3919 . . . . . . 7 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
10 eqid 2738 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
11 sumdchr2.1 . . . . . . . . 9 1 = (1r𝑍)
1210, 11ringidval 19739 . . . . . . . 8 1 = (0g‘(mulGrp‘𝑍))
13 eqid 2738 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
14 cnfld1 20623 . . . . . . . . 9 1 = (1r‘ℂfld)
1513, 14ringidval 19739 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
1612, 15mhm0 18438 . . . . . . 7 (𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑥1 ) = 1)
179, 16syl 17 . . . . . 6 ((𝜑𝑥𝐷) → (𝑥1 ) = 1)
183, 17sylan9eqr 2800 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝐴 = 1 ) → (𝑥𝐴) = 1)
1918an32s 649 . . . 4 (((𝜑𝐴 = 1 ) ∧ 𝑥𝐷) → (𝑥𝐴) = 1)
2019sumeq2dv 15415 . . 3 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = Σ𝑥𝐷 1)
21 sumdchr2.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
224, 6dchrfi 26403 . . . . . . 7 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
2321, 22syl 17 . . . . . 6 (𝜑𝐷 ∈ Fin)
24 ax-1cn 10929 . . . . . 6 1 ∈ ℂ
25 fsumconst 15502 . . . . . 6 ((𝐷 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝐷 1 = ((♯‘𝐷) · 1))
2623, 24, 25sylancl 586 . . . . 5 (𝜑 → Σ𝑥𝐷 1 = ((♯‘𝐷) · 1))
27 hashcl 14071 . . . . . . . 8 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
2821, 22, 273syl 18 . . . . . . 7 (𝜑 → (♯‘𝐷) ∈ ℕ0)
2928nn0cnd 12295 . . . . . 6 (𝜑 → (♯‘𝐷) ∈ ℂ)
3029mulid1d 10992 . . . . 5 (𝜑 → ((♯‘𝐷) · 1) = (♯‘𝐷))
3126, 30eqtrd 2778 . . . 4 (𝜑 → Σ𝑥𝐷 1 = (♯‘𝐷))
3231adantr 481 . . 3 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 1 = (♯‘𝐷))
3320, 32eqtrd 2778 . 2 ((𝜑𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = (♯‘𝐷))
34 df-ne 2944 . . 3 (𝐴1 ↔ ¬ 𝐴 = 1 )
35 sumdchr2.b . . . . 5 𝐵 = (Base‘𝑍)
3621adantr 481 . . . . 5 ((𝜑𝐴1 ) → 𝑁 ∈ ℕ)
37 simpr 485 . . . . 5 ((𝜑𝐴1 ) → 𝐴1 )
38 sumdchr2.x . . . . . 6 (𝜑𝐴𝐵)
3938adantr 481 . . . . 5 ((𝜑𝐴1 ) → 𝐴𝐵)
404, 5, 6, 35, 11, 36, 37, 39dchrpt 26415 . . . 4 ((𝜑𝐴1 ) → ∃𝑦𝐷 (𝑦𝐴) ≠ 1)
4136adantr 481 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑁 ∈ ℕ)
4241, 22syl 17 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐷 ∈ Fin)
43 simpr 485 . . . . . . . 8 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥𝐷)
444, 5, 6, 35, 43dchrf 26390 . . . . . . 7 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥:𝐵⟶ℂ)
4539adantr 481 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐴𝐵)
4645adantr 481 . . . . . . 7 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝐴𝐵)
4744, 46ffvelrnd 6962 . . . . . 6 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → (𝑥𝐴) ∈ ℂ)
4842, 47fsumcl 15445 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) ∈ ℂ)
49 0cnd 10968 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 0 ∈ ℂ)
50 simprl 768 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑦𝐷)
514, 5, 6, 35, 50dchrf 26390 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝑦:𝐵⟶ℂ)
5251, 45ffvelrnd 6962 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (𝑦𝐴) ∈ ℂ)
53 subcl 11220 . . . . . 6 (((𝑦𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦𝐴) − 1) ∈ ℂ)
5452, 24, 53sylancl 586 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) − 1) ∈ ℂ)
55 simprr 770 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (𝑦𝐴) ≠ 1)
56 subeq0 11247 . . . . . . . 8 (((𝑦𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦𝐴) − 1) = 0 ↔ (𝑦𝐴) = 1))
5752, 24, 56sylancl 586 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) = 0 ↔ (𝑦𝐴) = 1))
5857necon3bid 2988 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) ≠ 0 ↔ (𝑦𝐴) ≠ 1))
5955, 58mpbird 256 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) − 1) ≠ 0)
60 oveq2 7283 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑦(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑥))
6160fveq1d 6776 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝑦(+g𝐺)𝑧)‘𝐴) = ((𝑦(+g𝐺)𝑥)‘𝐴))
6261cbvsumv 15408 . . . . . . . . . 10 Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴) = Σ𝑥𝐷 ((𝑦(+g𝐺)𝑥)‘𝐴)
63 eqid 2738 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
6450adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦𝐷)
654, 5, 6, 63, 64, 43dchrmul 26396 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → (𝑦(+g𝐺)𝑥) = (𝑦f · 𝑥))
6665fveq1d 6776 . . . . . . . . . . . 12 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦(+g𝐺)𝑥)‘𝐴) = ((𝑦f · 𝑥)‘𝐴))
6751adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦:𝐵⟶ℂ)
6867ffnd 6601 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑦 Fn 𝐵)
6944ffnd 6601 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝑥 Fn 𝐵)
7035fvexi 6788 . . . . . . . . . . . . . 14 𝐵 ∈ V
7170a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → 𝐵 ∈ V)
72 fnfvof 7550 . . . . . . . . . . . . 13 (((𝑦 Fn 𝐵𝑥 Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝐴𝐵)) → ((𝑦f · 𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7368, 69, 71, 46, 72syl22anc 836 . . . . . . . . . . . 12 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦f · 𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7466, 73eqtrd 2778 . . . . . . . . . . 11 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑥𝐷) → ((𝑦(+g𝐺)𝑥)‘𝐴) = ((𝑦𝐴) · (𝑥𝐴)))
7574sumeq2dv 15415 . . . . . . . . . 10 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 ((𝑦(+g𝐺)𝑥)‘𝐴) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
7662, 75eqtrid 2790 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
77 fveq1 6773 . . . . . . . . . 10 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝐴) = ((𝑦(+g𝐺)𝑧)‘𝐴))
784dchrabl 26402 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
79 ablgrp 19391 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8041, 78, 793syl 18 . . . . . . . . . . 11 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 𝐺 ∈ Grp)
81 eqid 2738 . . . . . . . . . . . 12 (𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏))) = (𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))
8281, 6, 63grplactf1o 18679 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝐷) → ((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦):𝐷1-1-onto𝐷)
8380, 50, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦):𝐷1-1-onto𝐷)
8481, 6grplactval 18677 . . . . . . . . . . 11 ((𝑦𝐷𝑧𝐷) → (((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦)‘𝑧) = (𝑦(+g𝐺)𝑧))
8550, 84sylan 580 . . . . . . . . . 10 ((((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) ∧ 𝑧𝐷) → (((𝑎𝐷 ↦ (𝑏𝐷 ↦ (𝑎(+g𝐺)𝑏)))‘𝑦)‘𝑧) = (𝑦(+g𝐺)𝑧))
8677, 42, 83, 85, 47fsumf1o 15435 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) = Σ𝑧𝐷 ((𝑦(+g𝐺)𝑧)‘𝐴))
8742, 52, 47fsummulc2 15496 . . . . . . . . 9 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 ((𝑦𝐴) · (𝑥𝐴)))
8876, 86, 873eqtr4rd 2789 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → ((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 (𝑥𝐴))
8948mulid2d 10993 . . . . . . . 8 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (1 · Σ𝑥𝐷 (𝑥𝐴)) = Σ𝑥𝐷 (𝑥𝐴))
9088, 89oveq12d 7293 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))) = (Σ𝑥𝐷 (𝑥𝐴) − Σ𝑥𝐷 (𝑥𝐴)))
9148subidd 11320 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (Σ𝑥𝐷 (𝑥𝐴) − Σ𝑥𝐷 (𝑥𝐴)) = 0)
9290, 91eqtrd 2778 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))) = 0)
9324a1i 11 . . . . . . 7 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → 1 ∈ ℂ)
9452, 93, 48subdird 11432 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · Σ𝑥𝐷 (𝑥𝐴)) = (((𝑦𝐴) · Σ𝑥𝐷 (𝑥𝐴)) − (1 · Σ𝑥𝐷 (𝑥𝐴))))
9554mul01d 11174 . . . . . 6 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · 0) = 0)
9692, 94, 953eqtr4d 2788 . . . . 5 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → (((𝑦𝐴) − 1) · Σ𝑥𝐷 (𝑥𝐴)) = (((𝑦𝐴) − 1) · 0))
9748, 49, 54, 59, 96mulcanad 11610 . . . 4 (((𝜑𝐴1 ) ∧ (𝑦𝐷 ∧ (𝑦𝐴) ≠ 1)) → Σ𝑥𝐷 (𝑥𝐴) = 0)
9840, 97rexlimddv 3220 . . 3 ((𝜑𝐴1 ) → Σ𝑥𝐷 (𝑥𝐴) = 0)
9934, 98sylan2br 595 . 2 ((𝜑 ∧ ¬ 𝐴 = 1 ) → Σ𝑥𝐷 (𝑥𝐴) = 0)
1001, 2, 33, 99ifbothda 4497 1 (𝜑 → Σ𝑥𝐷 (𝑥𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  ifcif 4459  cmpt 5157   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  f cof 7531  Fincfn 8733  cc 10869  0cc0 10871  1c1 10872   · cmul 10876  cmin 11205  cn 11973  0cn0 12233  chash 14044  Σcsu 15397  Basecbs 16912  +gcplusg 16962   MndHom cmhm 18428  Grpcgrp 18577  Abelcabl 19387  mulGrpcmgp 19720  1rcur 19737  fldccnfld 20597  ℤ/nczn 20704  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-gim 18875  df-ga 18896  df-cntz 18923  df-oppg 18950  df-od 19136  df-gex 19137  df-pgp 19138  df-lsm 19241  df-pj1 19242  df-cmn 19388  df-abl 19389  df-cyg 19478  df-dprd 19598  df-dpj 19599  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-0p 24834  df-limc 25030  df-dv 25031  df-ply 25349  df-idp 25350  df-coe 25351  df-dgr 25352  df-quot 25451  df-log 25712  df-cxp 25713  df-dchr 26381
This theorem is referenced by:  dchrhash  26419  sumdchr  26420
  Copyright terms: Public domain W3C validator