| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpridd | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a right identity. Deduction associated with grprid 18900. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpridd | ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | grprid 18900 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: grprcan 18905 ghmqusnsglem1 19212 ablsubaddsub 19744 rnglidlmcl 21126 rloccring 33221 ressply1evls1 33534 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 irredminply 33706 rtelextdg2lem 33716 primrootscoprmpow 42087 primrootscoprbij 42090 |
| Copyright terms: Public domain | W3C validator |