![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpridd | Structured version Visualization version GIF version |
Description: The identity element of a group is a right identity. Deduction associated with grprid 19008. (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
grpridd | ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
6 | 3, 4, 5 | grprid 19008 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
7 | 1, 2, 6 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grprcan 19013 ghmqusnsglem1 19320 ablsubaddsub 19856 rnglidlmcl 21249 rloccring 33242 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 irredminply 33707 rtelextdg2lem 33717 primrootscoprmpow 42056 primrootscoprbij 42059 |
Copyright terms: Public domain | W3C validator |