| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18837 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndrid 18647 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: grpridd 18867 grpinvid1 18888 grpinvid2 18889 grpidinv2 18894 grpasscan2 18899 grpidrcan 18900 grpraddf1o 18911 grpsubid1 18922 grpsubadd 18925 grppncan 18928 mulgaddcom 18995 mulgdirlem 19002 mulgmodid 19010 nmzsubg 19062 0nsg 19066 ghmquskerlem1 19180 cntzsubg 19236 cayleylem2 19310 odbezout 19455 lsmdisj2 19579 pj1lid 19598 frgpuplem 19669 abladdsub4 19708 odadd2 19746 gex2abl 19748 ogrpaddltbi 20036 ogrpinvlt 20041 rnglz 20068 isabvd 20715 lmod0vrid 20814 lmodfopne 20821 islmhm2 20960 rnglidl0 21154 lsmcss 21617 mplcoe1 21960 mdetero 22513 mdetunilem6 22520 opnsubg 24011 tgpconncompeqg 24015 snclseqg 24019 clmvz 25027 deg1add 26024 gsumsubg 33012 archiabllem2a 33146 archiabllem2c 33147 lindsunlem 33596 lflmul 39046 cdlemn4 41177 mapdh6cN 41717 hdmap1l6c 41791 hdmapinvlem3 41899 hdmapinvlem4 41900 hdmapglem7b 41907 fsuppind 42563 |
| Copyright terms: Public domain | W3C validator |