Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version |
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18565 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndrid 18387 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 0gc0g 17131 Mndcmnd 18366 Grpcgrp 18558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-riota 7225 df-ov 7271 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 |
This theorem is referenced by: grprcan 18594 grpinvid1 18611 grpinvid2 18612 grpidinv2 18615 grpasscan2 18620 grpidrcan 18621 grpsubid1 18641 grpsubadd 18644 grppncan 18647 mulgaddcom 18708 mulgdirlem 18715 mulgmodid 18723 nmzsubg 18774 0nsg 18778 cntzsubg 18924 cayleylem2 19002 odbezout 19146 lsmdisj2 19269 pj1lid 19288 frgpuplem 19359 abladdsub4 19396 odadd2 19431 gex2abl 19433 ringlz 19807 isabvd 20061 lmod0vrid 20135 lmodfopne 20142 islmhm2 20281 lsmcss 20878 mplcoe1 21219 mdetero 21740 mdetunilem6 21747 opnsubg 23240 tgpconncompeqg 23244 snclseqg 23248 clmvz 24255 deg1add 25249 gsumsubg 31285 ogrpaddltbi 31323 ogrpinvlt 31328 archiabllem2a 31427 archiabllem2c 31428 lindsunlem 31684 lflmul 37061 cdlemn4 39191 mapdh6cN 39731 hdmap1l6c 39805 hdmapinvlem3 39913 hdmapinvlem4 39914 hdmapglem7b 39921 fsuppind 40259 rnglz 45394 |
Copyright terms: Public domain | W3C validator |