| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18923 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndrid 18733 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 Grpcgrp 18916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 |
| This theorem is referenced by: grpridd 18953 grpinvid1 18974 grpinvid2 18975 grpidinv2 18980 grpasscan2 18985 grpidrcan 18986 grpraddf1o 18997 grpsubid1 19008 grpsubadd 19011 grppncan 19014 mulgaddcom 19081 mulgdirlem 19088 mulgmodid 19096 nmzsubg 19148 0nsg 19152 ghmquskerlem1 19266 cntzsubg 19322 cayleylem2 19394 odbezout 19539 lsmdisj2 19663 pj1lid 19682 frgpuplem 19753 abladdsub4 19792 odadd2 19830 gex2abl 19832 rnglz 20125 isabvd 20772 lmod0vrid 20850 lmodfopne 20857 islmhm2 20996 rnglidl0 21190 lsmcss 21652 mplcoe1 21995 mdetero 22548 mdetunilem6 22555 opnsubg 24046 tgpconncompeqg 24050 snclseqg 24054 clmvz 25062 deg1add 26060 gsumsubg 33040 ogrpaddltbi 33086 ogrpinvlt 33091 archiabllem2a 33192 archiabllem2c 33193 lindsunlem 33664 lflmul 39086 cdlemn4 41217 mapdh6cN 41757 hdmap1l6c 41831 hdmapinvlem3 41939 hdmapinvlem4 41940 hdmapglem7b 41947 fsuppind 42613 |
| Copyright terms: Public domain | W3C validator |