![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version |
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18970 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndrid 18780 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 0gc0g 17485 Mndcmnd 18759 Grpcgrp 18963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-riota 7387 df-ov 7433 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 |
This theorem is referenced by: grpridd 19000 grpinvid1 19021 grpinvid2 19022 grpidinv2 19027 grpasscan2 19032 grpidrcan 19033 grpraddf1o 19044 grpsubid1 19055 grpsubadd 19058 grppncan 19061 mulgaddcom 19128 mulgdirlem 19135 mulgmodid 19143 nmzsubg 19195 0nsg 19199 ghmquskerlem1 19313 cntzsubg 19369 cayleylem2 19445 odbezout 19590 lsmdisj2 19714 pj1lid 19733 frgpuplem 19804 abladdsub4 19843 odadd2 19881 gex2abl 19883 rnglz 20182 isabvd 20829 lmod0vrid 20907 lmodfopne 20914 islmhm2 21054 rnglidl0 21256 lsmcss 21727 mplcoe1 22072 mdetero 22631 mdetunilem6 22638 opnsubg 24131 tgpconncompeqg 24135 snclseqg 24139 clmvz 25157 deg1add 26156 gsumsubg 33031 ogrpaddltbi 33077 ogrpinvlt 33082 archiabllem2a 33183 archiabllem2c 33184 lindsunlem 33651 lflmul 39049 cdlemn4 41180 mapdh6cN 41720 hdmap1l6c 41794 hdmapinvlem3 41902 hdmapinvlem4 41903 hdmapglem7b 41910 fsuppind 42576 |
Copyright terms: Public domain | W3C validator |