| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18850 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndrid 18660 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Mndcmnd 18639 Grpcgrp 18843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 |
| This theorem is referenced by: grpridd 18880 grpinvid1 18901 grpinvid2 18902 grpidinv2 18907 grpasscan2 18912 grpidrcan 18913 grpraddf1o 18924 grpsubid1 18935 grpsubadd 18938 grppncan 18941 mulgaddcom 19008 mulgdirlem 19015 mulgmodid 19023 nmzsubg 19075 0nsg 19079 ghmquskerlem1 19193 cntzsubg 19249 cayleylem2 19323 odbezout 19468 lsmdisj2 19592 pj1lid 19611 frgpuplem 19682 abladdsub4 19721 odadd2 19759 gex2abl 19761 ogrpaddltbi 20049 ogrpinvlt 20054 rnglz 20081 isabvd 20725 lmod0vrid 20824 lmodfopne 20831 islmhm2 20970 rnglidl0 21164 lsmcss 21627 mplcoe1 21970 mdetero 22523 mdetunilem6 22530 opnsubg 24021 tgpconncompeqg 24025 snclseqg 24029 clmvz 25036 deg1add 26033 gsumsubg 33021 archiabllem2a 33158 archiabllem2c 33159 lindsunlem 33632 lflmul 39106 cdlemn4 41236 mapdh6cN 41776 hdmap1l6c 41850 hdmapinvlem3 41958 hdmapinvlem4 41959 hdmapglem7b 41966 fsuppind 42622 |
| Copyright terms: Public domain | W3C validator |