![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version |
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18980 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndrid 18793 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grpridd 19010 grpinvid1 19031 grpinvid2 19032 grpidinv2 19037 grpasscan2 19042 grpidrcan 19043 grpraddf1o 19054 grpsubid1 19065 grpsubadd 19068 grppncan 19071 mulgaddcom 19138 mulgdirlem 19145 mulgmodid 19153 nmzsubg 19205 0nsg 19209 ghmquskerlem1 19323 cntzsubg 19379 cayleylem2 19455 odbezout 19600 lsmdisj2 19724 pj1lid 19743 frgpuplem 19814 abladdsub4 19853 odadd2 19891 gex2abl 19893 rnglz 20192 isabvd 20835 lmod0vrid 20913 lmodfopne 20920 islmhm2 21060 rnglidl0 21262 lsmcss 21733 mplcoe1 22078 mdetero 22637 mdetunilem6 22644 opnsubg 24137 tgpconncompeqg 24141 snclseqg 24145 clmvz 25163 deg1add 26162 gsumsubg 33029 ogrpaddltbi 33068 ogrpinvlt 33073 archiabllem2a 33174 archiabllem2c 33175 lindsunlem 33637 lflmul 39024 cdlemn4 41155 mapdh6cN 41695 hdmap1l6c 41769 hdmapinvlem3 41877 hdmapinvlem4 41878 hdmapglem7b 41885 fsuppind 42545 |
Copyright terms: Public domain | W3C validator |