![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version |
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 17856 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndrid 17739 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 +gcplusg 16382 0gc0g 16530 Mndcmnd 17721 Grpcgrp 17849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-iota 6181 df-fun 6219 df-fv 6225 df-riota 6968 df-ov 7010 df-0g 16532 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-grp 17852 |
This theorem is referenced by: grprcan 17882 grpinvid1 17899 grpinvid2 17900 grpidinv2 17903 grpasscan2 17908 grpidrcan 17909 grpsubid1 17929 grpsubadd 17932 grppncan 17935 mulgaddcom 17993 mulgdirlem 18000 mulgmodid 18008 nmzsubg 18062 0nsg 18066 cntzsubg 18196 cayleylem2 18260 odbezout 18403 lsmdisj2 18523 pj1lid 18542 frgpuplem 18613 abladdsub4 18647 odadd2 18680 gex2abl 18682 ringlz 19015 isabvd 19269 lmod0vrid 19343 lmodfopne 19350 islmhm2 19488 mplcoe1 19921 mhpinvcl 20010 lsmcss 20506 mdetero 20891 mdetunilem6 20898 opnsubg 22387 tgpconncompeqg 22391 snclseqg 22395 clmvz 23386 deg1add 24368 ogrpaddltbi 30349 ogrpinvlt 30354 archiabllem2a 30419 archiabllem2c 30420 gsumsubg 30450 lindsunlem 30579 lflmul 35685 cdlemn4 37815 mapdh6cN 38355 hdmap1l6c 38429 hdmapinvlem3 38537 hdmapinvlem4 38538 hdmapglem7b 38545 rnglz 43587 |
Copyright terms: Public domain | W3C validator |