| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18879 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndrid 18689 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: grpridd 18909 grpinvid1 18930 grpinvid2 18931 grpidinv2 18936 grpasscan2 18941 grpidrcan 18942 grpraddf1o 18953 grpsubid1 18964 grpsubadd 18967 grppncan 18970 mulgaddcom 19037 mulgdirlem 19044 mulgmodid 19052 nmzsubg 19104 0nsg 19108 ghmquskerlem1 19222 cntzsubg 19278 cayleylem2 19350 odbezout 19495 lsmdisj2 19619 pj1lid 19638 frgpuplem 19709 abladdsub4 19748 odadd2 19786 gex2abl 19788 rnglz 20081 isabvd 20728 lmod0vrid 20806 lmodfopne 20813 islmhm2 20952 rnglidl0 21146 lsmcss 21608 mplcoe1 21951 mdetero 22504 mdetunilem6 22511 opnsubg 24002 tgpconncompeqg 24006 snclseqg 24010 clmvz 25018 deg1add 26015 gsumsubg 32993 ogrpaddltbi 33039 ogrpinvlt 33044 archiabllem2a 33155 archiabllem2c 33156 lindsunlem 33627 lflmul 39068 cdlemn4 41199 mapdh6cN 41739 hdmap1l6c 41813 hdmapinvlem3 41921 hdmapinvlem4 41922 hdmapglem7b 41929 fsuppind 42585 |
| Copyright terms: Public domain | W3C validator |