Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grprid | Structured version Visualization version GIF version |
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grprid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18629 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndrid 18451 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 581 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 0gc0g 17195 Mndcmnd 18430 Grpcgrp 18622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-riota 7264 df-ov 7310 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 |
This theorem is referenced by: grprcan 18658 grpinvid1 18675 grpinvid2 18676 grpidinv2 18679 grpasscan2 18684 grpidrcan 18685 grpsubid1 18705 grpsubadd 18708 grppncan 18711 mulgaddcom 18772 mulgdirlem 18779 mulgmodid 18787 nmzsubg 18838 0nsg 18842 cntzsubg 18988 cayleylem2 19066 odbezout 19210 lsmdisj2 19333 pj1lid 19352 frgpuplem 19423 abladdsub4 19460 odadd2 19495 gex2abl 19497 ringlz 19871 isabvd 20125 lmod0vrid 20199 lmodfopne 20206 islmhm2 20345 lsmcss 20942 mplcoe1 21283 mdetero 21804 mdetunilem6 21811 opnsubg 23304 tgpconncompeqg 23308 snclseqg 23312 clmvz 24319 deg1add 25313 gsumsubg 31351 ogrpaddltbi 31389 ogrpinvlt 31394 archiabllem2a 31493 archiabllem2c 31494 lindsunlem 31750 lflmul 37124 cdlemn4 39254 mapdh6cN 39794 hdmap1l6c 39868 hdmapinvlem3 39976 hdmapinvlem4 39977 hdmapglem7b 39984 fsuppind 40316 rnglz 45500 |
Copyright terms: Public domain | W3C validator |