Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  primrootscoprbij Structured version   Visualization version   GIF version

Theorem primrootscoprbij 41605
Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025.)
Hypotheses
Ref Expression
primrootscoprbij.1 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g𝑅)𝑚))
primrootscoprbij.2 (𝜑𝑅 ∈ CMnd)
primrootscoprbij.3 (𝜑𝐾 ∈ ℕ)
primrootscoprbij.4 (𝜑𝐼 ∈ ℕ)
primrootscoprbij.5 (𝜑𝐽 ∈ ℕ)
primrootscoprbij.6 (𝜑𝑍 ∈ ℤ)
primrootscoprbij.7 (𝜑 → 1 = ((𝐼 · 𝐽) + (𝐾 · 𝑍)))
primrootscoprbij.8 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
Assertion
Ref Expression
primrootscoprbij (𝜑𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾))
Distinct variable groups:   𝑚,𝐼   𝑚,𝐽   𝑚,𝐾   𝑅,𝑎,𝑖   𝑅,𝑚   𝜑,𝑖   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑎)   𝑈(𝑖,𝑚,𝑎)   𝐹(𝑖,𝑚,𝑎)   𝐼(𝑖,𝑎)   𝐽(𝑖,𝑎)   𝐾(𝑖,𝑎)   𝑍(𝑖,𝑚,𝑎)

Proof of Theorem primrootscoprbij
Dummy variables 𝑥 𝑦 𝑛 𝑙 𝑡 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 primrootscoprbij.1 . . 3 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g𝑅)𝑚))
2 primrootscoprbij.2 . . 3 (𝜑𝑅 ∈ CMnd)
3 primrootscoprbij.3 . . 3 (𝜑𝐾 ∈ ℕ)
4 primrootscoprbij.4 . . 3 (𝜑𝐼 ∈ ℕ)
54nnzd 12623 . . . . . 6 (𝜑𝐼 ∈ ℤ)
63nnzd 12623 . . . . . 6 (𝜑𝐾 ∈ ℤ)
7 primrootscoprbij.5 . . . . . . . 8 (𝜑𝐽 ∈ ℕ)
87nnzd 12623 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
9 primrootscoprbij.6 . . . . . . 7 (𝜑𝑍 ∈ ℤ)
108, 9jca 510 . . . . . 6 (𝜑 → (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ))
115, 6, 10jca31 513 . . . . 5 (𝜑 → ((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)))
12 primrootscoprbij.7 . . . . . 6 (𝜑 → 1 = ((𝐼 · 𝐽) + (𝐾 · 𝑍)))
1312eqcomd 2734 . . . . 5 (𝜑 → ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1)
1411, 13jca 510 . . . 4 (𝜑 → (((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1))
15 bezoutr1 16547 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) → (((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1 → (𝐼 gcd 𝐾) = 1))
1615imp 405 . . . 4 ((((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1) → (𝐼 gcd 𝐾) = 1)
1714, 16syl 17 . . 3 (𝜑 → (𝐼 gcd 𝐾) = 1)
181, 2, 3, 4, 17primrootscoprf 41604 . 2 (𝜑𝐹:(𝑅 PrimRoots 𝐾)⟶(𝑅 PrimRoots 𝐾))
19 eqid 2728 . . 3 (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))
208, 6jca 510 . . . . . 6 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
215, 9jca 510 . . . . . 6 (𝜑 → (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ))
2220, 21jca 510 . . . . 5 (𝜑 → ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)))
237nncnd 12266 . . . . . . . 8 (𝜑𝐽 ∈ ℂ)
244nncnd 12266 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
2523, 24mulcomd 11273 . . . . . . 7 (𝜑 → (𝐽 · 𝐼) = (𝐼 · 𝐽))
2625oveq1d 7441 . . . . . 6 (𝜑 → ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = ((𝐼 · 𝐽) + (𝐾 · 𝑍)))
2726, 13eqtrd 2768 . . . . 5 (𝜑 → ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1)
2822, 27jca 510 . . . 4 (𝜑 → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1))
29 bezoutr1 16547 . . . . 5 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) → (((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1 → (𝐽 gcd 𝐾) = 1))
3029imp 405 . . . 4 ((((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1) → (𝐽 gcd 𝐾) = 1)
3128, 30syl 17 . . 3 (𝜑 → (𝐽 gcd 𝐾) = 1)
3219, 2, 3, 7, 31primrootscoprf 41604 . 2 (𝜑 → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛)):(𝑅 PrimRoots 𝐾)⟶(𝑅 PrimRoots 𝐾))
331a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g𝑅)𝑚)))
34 simpr 483 . . . . . . 7 (((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = 𝑥) → 𝑚 = 𝑥)
3534oveq2d 7442 . . . . . 6 (((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = 𝑥) → (𝐼(.g𝑅)𝑚) = (𝐼(.g𝑅)𝑥))
36 simpr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑥 ∈ (𝑅 PrimRoots 𝐾))
372cmnmndd 19766 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
3837adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ Mnd)
394nnnn0d 12570 . . . . . . . 8 (𝜑𝐼 ∈ ℕ0)
4039adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈ ℕ0)
413nnnn0d 12570 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ0)
42 eqid 2728 . . . . . . . . . . 11 (.g𝑅) = (.g𝑅)
432, 41, 42isprimroot 41596 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))))
4443biimpd 228 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))))
4544imp 405 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)))
4645simp1d 1139 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑥 ∈ (Base‘𝑅))
47 eqid 2728 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4847, 42mulgnn0cl 19052 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐼 ∈ ℕ0𝑥 ∈ (Base‘𝑅)) → (𝐼(.g𝑅)𝑥) ∈ (Base‘𝑅))
4938, 40, 46, 48syl3anc 1368 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g𝑅)𝑥) ∈ (Base‘𝑅))
5033, 35, 36, 49fvmptd 7017 . . . . 5 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹𝑥) = (𝐼(.g𝑅)𝑥))
5150fveq2d 6906 . . . 4 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘(𝐹𝑥)) = ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘(𝐼(.g𝑅)𝑥)))
52 eqidd 2729 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛)))
53 simpr 483 . . . . . . 7 (((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = (𝐼(.g𝑅)𝑥)) → 𝑛 = (𝐼(.g𝑅)𝑥))
5453oveq2d 7442 . . . . . 6 (((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = (𝐼(.g𝑅)𝑥)) → (𝐽(.g𝑅)𝑛) = (𝐽(.g𝑅)(𝐼(.g𝑅)𝑥)))
552adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ CMnd)
563adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℕ)
574adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈ ℕ)
5817adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 gcd 𝐾) = 1)
59 eqid 2728 . . . . . . 7 {𝑠 ∈ (Base‘𝑅) ∣ ∃𝑡 ∈ (Base‘𝑅)(𝑡(+g𝑅)𝑠) = (0g𝑅)} = {𝑠 ∈ (Base‘𝑅) ∣ ∃𝑡 ∈ (Base‘𝑅)(𝑡(+g𝑅)𝑠) = (0g𝑅)}
6055, 56, 57, 58, 36, 59primrootscoprmpow 41602 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g𝑅)𝑥) ∈ (𝑅 PrimRoots 𝐾))
617nnnn0d 12570 . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
6261adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈ ℕ0)
6347, 42mulgnn0cl 19052 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐽 ∈ ℕ0 ∧ (𝐼(.g𝑅)𝑥) ∈ (Base‘𝑅)) → (𝐽(.g𝑅)(𝐼(.g𝑅)𝑥)) ∈ (Base‘𝑅))
6438, 62, 49, 63syl3anc 1368 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g𝑅)(𝐼(.g𝑅)𝑥)) ∈ (Base‘𝑅))
6552, 54, 60, 64fvmptd 7017 . . . . 5 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘(𝐼(.g𝑅)𝑥)) = (𝐽(.g𝑅)(𝐼(.g𝑅)𝑥)))
6662, 40, 463jca 1125 . . . . . . 7 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽 ∈ ℕ0𝐼 ∈ ℕ0𝑥 ∈ (Base‘𝑅)))
6747, 42mulgnn0ass 19072 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝐽 ∈ ℕ0𝐼 ∈ ℕ0𝑥 ∈ (Base‘𝑅))) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = (𝐽(.g𝑅)(𝐼(.g𝑅)𝑥)))
6838, 66, 67syl2anc 582 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = (𝐽(.g𝑅)(𝐼(.g𝑅)𝑥)))
69 primrootscoprbij.8 . . . . . . . . . . . 12 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
702, 3, 69primrootsunit 41600 . . . . . . . . . . 11 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
7170simpld 493 . . . . . . . . . 10 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
7271eleq2d 2815 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)))
7372biimpd 228 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → 𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)))
7470simprd 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅s 𝑈) ∈ Abel)
75 ablgrp 19747 . . . . . . . . . . . . . . . . . 18 ((𝑅s 𝑈) ∈ Abel → (𝑅s 𝑈) ∈ Grp)
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅s 𝑈) ∈ Grp)
77 grpmnd 18904 . . . . . . . . . . . . . . . . 17 ((𝑅s 𝑈) ∈ Grp → (𝑅s 𝑈) ∈ Mnd)
7876, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅s 𝑈) ∈ Mnd)
7937, 78jca 510 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ Mnd ∧ (𝑅s 𝑈) ∈ Mnd))
8069a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)})
8180eleq2d 2815 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑓𝑈𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}))
8281biimpd 228 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑓𝑈𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}))
8382imp 405 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝑈) → 𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)})
84 oveq2 7434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑓 → (𝑖(+g𝑅)𝑎) = (𝑖(+g𝑅)𝑓))
8584eqeq1d 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → ((𝑖(+g𝑅)𝑎) = (0g𝑅) ↔ (𝑖(+g𝑅)𝑓) = (0g𝑅)))
8685rexbidv 3176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑓 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑓) = (0g𝑅)))
8786elrab 3684 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)} ↔ (𝑓 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑓) = (0g𝑅)))
8887biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)} → (𝑓 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑓) = (0g𝑅)))
8988simpld 493 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)} → 𝑓 ∈ (Base‘𝑅))
9083, 89syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝑈) → 𝑓 ∈ (Base‘𝑅))
9190ex 411 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑓𝑈𝑓 ∈ (Base‘𝑅)))
9291ssrdv 3988 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ⊆ (Base‘𝑅))
93 oveq2 7434 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (0g𝑅) → (𝑖(+g𝑅)𝑎) = (𝑖(+g𝑅)(0g𝑅)))
9493eqeq1d 2730 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (0g𝑅) → ((𝑖(+g𝑅)𝑎) = (0g𝑅) ↔ (𝑖(+g𝑅)(0g𝑅)) = (0g𝑅)))
9594rexbidv 3176 . . . . . . . . . . . . . . . . . 18 (𝑎 = (0g𝑅) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)(0g𝑅)) = (0g𝑅)))
96 eqid 2728 . . . . . . . . . . . . . . . . . . . 20 (0g𝑅) = (0g𝑅)
9747, 96mndidcl 18716 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
9837, 97syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
99 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 = (0g𝑅)) → 𝑖 = (0g𝑅))
10099oveq1d 7441 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = (0g𝑅)) → (𝑖(+g𝑅)(0g𝑅)) = ((0g𝑅)(+g𝑅)(0g𝑅)))
101100eqeq1d 2730 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = (0g𝑅)) → ((𝑖(+g𝑅)(0g𝑅)) = (0g𝑅) ↔ ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅)))
102 eqid 2728 . . . . . . . . . . . . . . . . . . . . 21 (+g𝑅) = (+g𝑅)
10347, 102, 96mndlid 18721 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
10437, 98, 103syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
10598, 101, 104rspcedvd 3613 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)(0g𝑅)) = (0g𝑅))
10695, 98, 105elrabd 3686 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝑅) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)})
10780eleq2d 2815 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0g𝑅) ∈ 𝑈 ↔ (0g𝑅) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}))
108106, 107mpbird 256 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝑅) ∈ 𝑈)
10992, 108jca 510 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 ⊆ (Base‘𝑅) ∧ (0g𝑅) ∈ 𝑈))
11079, 109jca 510 . . . . . . . . . . . . . 14 (𝜑 → ((𝑅 ∈ Mnd ∧ (𝑅s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g𝑅) ∈ 𝑈)))
11147, 96issubmndb 18764 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubMnd‘𝑅) ↔ ((𝑅 ∈ Mnd ∧ (𝑅s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g𝑅) ∈ 𝑈)))
112110, 111sylibr 233 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubMnd‘𝑅))
113112adantr 479 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅))
11461adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝐽 ∈ ℕ0)
11539adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝐼 ∈ ℕ0)
116114, 115nn0mulcld 12575 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) ∈ ℕ0)
11774ablcmnd 19750 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
118 eqid 2728 . . . . . . . . . . . . . . . . 17 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
119117, 41, 118isprimroot 41596 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑥 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
120119biimpd 228 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑥 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
121120imp 405 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
122121simp1d 1139 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝑥 ∈ (Base‘(𝑅s 𝑈)))
123 eqid 2728 . . . . . . . . . . . . . . . . 17 (𝑅s 𝑈) = (𝑅s 𝑈)
124123, 47ressbas2 17225 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (Base‘𝑅) → 𝑈 = (Base‘(𝑅s 𝑈)))
12592, 124syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘(𝑅s 𝑈)))
126125adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝑈 = (Base‘(𝑅s 𝑈)))
127126eleq2d 2815 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑥𝑈𝑥 ∈ (Base‘(𝑅s 𝑈))))
128122, 127mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝑥𝑈)
12942, 123, 118submmulg 19080 . . . . . . . . . . . 12 ((𝑈 ∈ (SubMnd‘𝑅) ∧ (𝐽 · 𝐼) ∈ ℕ0𝑥𝑈) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = ((𝐽 · 𝐼)(.g‘(𝑅s 𝑈))𝑥))
130113, 116, 128, 129syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = ((𝐽 · 𝐼)(.g‘(𝑅s 𝑈))𝑥))
13125adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) = (𝐼 · 𝐽))
13224, 23mulcld 11272 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐼 · 𝐽) ∈ ℂ)
1333nncnd 12266 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
1349zcnd 12705 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑍 ∈ ℂ)
135133, 134mulcld 11272 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 · 𝑍) ∈ ℂ)
136 1cnd 11247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℂ)
137132, 135, 136addlsub 11668 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1 ↔ (𝐼 · 𝐽) = (1 − (𝐾 · 𝑍))))
13813, 137mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐼 · 𝐽) = (1 − (𝐾 · 𝑍)))
139133, 134mulcomd 11273 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 · 𝑍) = (𝑍 · 𝐾))
140139oveq2d 7442 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 − (𝐾 · 𝑍)) = (1 − (𝑍 · 𝐾)))
141138, 140eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 · 𝐽) = (1 − (𝑍 · 𝐾)))
142139, 135eqeltrrd 2830 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑍 · 𝐾) ∈ ℂ)
143136, 142negsubd 11615 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + -(𝑍 · 𝐾)) = (1 − (𝑍 · 𝐾)))
144143eqcomd 2734 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − (𝑍 · 𝐾)) = (1 + -(𝑍 · 𝐾)))
145141, 144eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾)))
146145adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾)))
147131, 146eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) = (1 + -(𝑍 · 𝐾)))
148147oveq1d 7441 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘(𝑅s 𝑈))𝑥) = ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑥))
14976adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑅s 𝑈) ∈ Grp)
150 1zzd 12631 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 1 ∈ ℤ)
1519adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝑍 ∈ ℤ)
1526adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → 𝐾 ∈ ℤ)
153151, 152zmulcld 12710 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑍 · 𝐾) ∈ ℤ)
154153znegcld 12706 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → -(𝑍 · 𝐾) ∈ ℤ)
155150, 154, 1223jca 1125 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅s 𝑈))))
156 eqid 2728 . . . . . . . . . . . . . . 15 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
157 eqid 2728 . . . . . . . . . . . . . . 15 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
158156, 118, 157mulgdir 19068 . . . . . . . . . . . . . 14 (((𝑅s 𝑈) ∈ Grp ∧ (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅s 𝑈)))) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑥) = ((1(.g‘(𝑅s 𝑈))𝑥)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)))
159149, 155, 158syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑥) = ((1(.g‘(𝑅s 𝑈))𝑥)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)))
160156, 118mulg1 19043 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (Base‘(𝑅s 𝑈)) → (1(.g‘(𝑅s 𝑈))𝑥) = 𝑥)
161122, 160syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (1(.g‘(𝑅s 𝑈))𝑥) = 𝑥)
162 eqid 2728 . . . . . . . . . . . . . . . . 17 (invg‘(𝑅s 𝑈)) = (invg‘(𝑅s 𝑈))
163156, 118, 162mulgneg 19054 . . . . . . . . . . . . . . . 16 (((𝑅s 𝑈) ∈ Grp ∧ (𝑍 · 𝐾) ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅s 𝑈))) → (-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥) = ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)))
164149, 153, 122, 163syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥) = ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)))
165161, 164oveq12d 7444 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((1(.g‘(𝑅s 𝑈))𝑥)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)) = (𝑥(+g‘(𝑅s 𝑈))((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥))))
166151, 152, 1223jca 1125 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅s 𝑈))))
167156, 118mulgass 19073 . . . . . . . . . . . . . . . . . . . 20 (((𝑅s 𝑈) ∈ Grp ∧ (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥) = (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑥)))
168149, 166, 167syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥) = (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑥)))
169121simp2d 1140 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)))
170169oveq2d 7442 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑥)) = (𝑍(.g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))))
171 eqid 2728 . . . . . . . . . . . . . . . . . . . . . 22 (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈))
172156, 118, 171mulgz 19064 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅s 𝑈) ∈ Grp ∧ 𝑍 ∈ ℤ) → (𝑍(.g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))) = (0g‘(𝑅s 𝑈)))
173149, 151, 172syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))) = (0g‘(𝑅s 𝑈)))
174170, 173eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑥)) = (0g‘(𝑅s 𝑈)))
175168, 174eqtrd 2768 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥) = (0g‘(𝑅s 𝑈)))
176175fveq2d 6906 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)) = ((invg‘(𝑅s 𝑈))‘(0g‘(𝑅s 𝑈))))
177171, 162grpinvid 18963 . . . . . . . . . . . . . . . . . . 19 ((𝑅s 𝑈) ∈ Grp → ((invg‘(𝑅s 𝑈))‘(0g‘(𝑅s 𝑈))) = (0g‘(𝑅s 𝑈)))
17876, 177syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((invg‘(𝑅s 𝑈))‘(0g‘(𝑅s 𝑈))) = (0g‘(𝑅s 𝑈)))
179178adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅s 𝑈))‘(0g‘(𝑅s 𝑈))) = (0g‘(𝑅s 𝑈)))
180176, 179eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)) = (0g‘(𝑅s 𝑈)))
181180oveq2d 7442 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅s 𝑈))((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥))) = (𝑥(+g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))))
182149, 77syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑅s 𝑈) ∈ Mnd)
183156, 157, 171mndrid 18722 . . . . . . . . . . . . . . . 16 (((𝑅s 𝑈) ∈ Mnd ∧ 𝑥 ∈ (Base‘(𝑅s 𝑈))) → (𝑥(+g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))) = 𝑥)
184182, 122, 183syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))) = 𝑥)
185181, 184eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅s 𝑈))((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥))) = 𝑥)
186165, 185eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((1(.g‘(𝑅s 𝑈))𝑥)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑥)) = 𝑥)
187159, 186eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑥) = 𝑥)
188148, 187eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘(𝑅s 𝑈))𝑥) = 𝑥)
189130, 188eqtrd 2768 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = 𝑥)
190189ex 411 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = 𝑥))
191190imim2d 57 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝑅 PrimRoots 𝐾) → 𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = 𝑥)))
19273, 191mpd 15 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = 𝑥))
193192imp 405 . . . . . 6 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g𝑅)𝑥) = 𝑥)
19468, 193eqtr3d 2770 . . . . 5 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g𝑅)(𝐼(.g𝑅)𝑥)) = 𝑥)
19565, 194eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘(𝐼(.g𝑅)𝑥)) = 𝑥)
19651, 195eqtrd 2768 . . 3 ((𝜑𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘(𝐹𝑥)) = 𝑥)
197196ralrimiva 3143 . 2 (𝜑 → ∀𝑥 ∈ (𝑅 PrimRoots 𝐾)((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘(𝐹𝑥)) = 𝑥)
198 eqidd 2729 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛)))
199 simpr 483 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = 𝑦) → 𝑛 = 𝑦)
200199oveq2d 7442 . . . . . 6 (((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = 𝑦) → (𝐽(.g𝑅)𝑛) = (𝐽(.g𝑅)𝑦))
201 simpr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (𝑅 PrimRoots 𝐾))
20237adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ Mnd)
20361adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈ ℕ0)
2042, 41, 42isprimroot 41596 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑦) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑦) = (0g𝑅) → 𝐾𝑙))))
205204biimpd 228 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑦) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑦) = (0g𝑅) → 𝐾𝑙))))
206205imp 405 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑦) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑦) = (0g𝑅) → 𝐾𝑙)))
207206simp1d 1139 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (Base‘𝑅))
20847, 42mulgnn0cl 19052 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐽 ∈ ℕ0𝑦 ∈ (Base‘𝑅)) → (𝐽(.g𝑅)𝑦) ∈ (Base‘𝑅))
209202, 203, 207, 208syl3anc 1368 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g𝑅)𝑦) ∈ (Base‘𝑅))
210198, 200, 201, 209fvmptd 7017 . . . . 5 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘𝑦) = (𝐽(.g𝑅)𝑦))
211210fveq2d 6906 . . . 4 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘𝑦)) = (𝐹‘(𝐽(.g𝑅)𝑦)))
2121a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g𝑅)𝑚)))
213 simpr 483 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = (𝐽(.g𝑅)𝑦)) → 𝑚 = (𝐽(.g𝑅)𝑦))
214213oveq2d 7442 . . . . . 6 (((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = (𝐽(.g𝑅)𝑦)) → (𝐼(.g𝑅)𝑚) = (𝐼(.g𝑅)(𝐽(.g𝑅)𝑦)))
2152adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ CMnd)
2163adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℕ)
2177adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈ ℕ)
21831adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽 gcd 𝐾) = 1)
219215, 216, 217, 218, 201, 59primrootscoprmpow 41602 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g𝑅)𝑦) ∈ (𝑅 PrimRoots 𝐾))
22039adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈ ℕ0)
22147, 42mulgnn0cl 19052 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐼 ∈ ℕ0 ∧ (𝐽(.g𝑅)𝑦) ∈ (Base‘𝑅)) → (𝐼(.g𝑅)(𝐽(.g𝑅)𝑦)) ∈ (Base‘𝑅))
222202, 220, 209, 221syl3anc 1368 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g𝑅)(𝐽(.g𝑅)𝑦)) ∈ (Base‘𝑅))
223212, 214, 219, 222fvmptd 7017 . . . . 5 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘(𝐽(.g𝑅)𝑦)) = (𝐼(.g𝑅)(𝐽(.g𝑅)𝑦)))
224220, 203, 2073jca 1125 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 ∈ ℕ0𝐽 ∈ ℕ0𝑦 ∈ (Base‘𝑅)))
22547, 42mulgnn0ass 19072 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝐼 ∈ ℕ0𝐽 ∈ ℕ0𝑦 ∈ (Base‘𝑅))) → ((𝐼 · 𝐽)(.g𝑅)𝑦) = (𝐼(.g𝑅)(𝐽(.g𝑅)𝑦)))
226202, 224, 225syl2anc 582 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g𝑅)𝑦) = (𝐼(.g𝑅)(𝐽(.g𝑅)𝑦)))
227112adantr 479 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅))
228220, 203nn0mulcld 12575 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 · 𝐽) ∈ ℕ0)
229128ex 411 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → 𝑥𝑈))
230229ssrdv 3988 . . . . . . . . . . 11 (𝜑 → ((𝑅s 𝑈) PrimRoots 𝐾) ⊆ 𝑈)
23171sseq1d 4013 . . . . . . . . . . 11 (𝜑 → ((𝑅 PrimRoots 𝐾) ⊆ 𝑈 ↔ ((𝑅s 𝑈) PrimRoots 𝐾) ⊆ 𝑈))
232230, 231mpbird 256 . . . . . . . . . 10 (𝜑 → (𝑅 PrimRoots 𝐾) ⊆ 𝑈)
233232sseld 3981 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → 𝑦𝑈))
234233imp 405 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦𝑈)
23542, 123, 118submmulg 19080 . . . . . . . 8 ((𝑈 ∈ (SubMnd‘𝑅) ∧ (𝐼 · 𝐽) ∈ ℕ0𝑦𝑈) → ((𝐼 · 𝐽)(.g𝑅)𝑦) = ((𝐼 · 𝐽)(.g‘(𝑅s 𝑈))𝑦))
236227, 228, 234, 235syl3anc 1368 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g𝑅)𝑦) = ((𝐼 · 𝐽)(.g‘(𝑅s 𝑈))𝑦))
237145adantr 479 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾)))
238237oveq1d 7441 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘(𝑅s 𝑈))𝑦) = ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑦))
23976adantr 479 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑅s 𝑈) ∈ Grp)
240 1zzd 12631 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 1 ∈ ℤ)
2419adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑍 ∈ ℤ)
2426adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℤ)
243241, 242zmulcld 12710 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍 · 𝐾) ∈ ℤ)
244243znegcld 12706 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → -(𝑍 · 𝐾) ∈ ℤ)
245232, 125sseqtrd 4022 . . . . . . . . . . . . 13 (𝜑 → (𝑅 PrimRoots 𝐾) ⊆ (Base‘(𝑅s 𝑈)))
246245sseld 3981 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → 𝑦 ∈ (Base‘(𝑅s 𝑈))))
247246imp 405 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (Base‘(𝑅s 𝑈)))
248240, 244, 2473jca 1125 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅s 𝑈))))
249156, 118, 157mulgdir 19068 . . . . . . . . . 10 (((𝑅s 𝑈) ∈ Grp ∧ (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅s 𝑈)))) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑦) = ((1(.g‘(𝑅s 𝑈))𝑦)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)))
250239, 248, 249syl2anc 582 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑦) = ((1(.g‘(𝑅s 𝑈))𝑦)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)))
251156, 118mulg1 19043 . . . . . . . . . . . 12 (𝑦 ∈ (Base‘(𝑅s 𝑈)) → (1(.g‘(𝑅s 𝑈))𝑦) = 𝑦)
252247, 251syl 17 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (1(.g‘(𝑅s 𝑈))𝑦) = 𝑦)
253156, 118, 162mulgneg 19054 . . . . . . . . . . . . 13 (((𝑅s 𝑈) ∈ Grp ∧ (𝑍 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅s 𝑈))) → (-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦) = ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)))
254239, 243, 247, 253syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦) = ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)))
255241, 242, 2473jca 1125 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅s 𝑈))))
256156, 118mulgass 19073 . . . . . . . . . . . . . . . 16 (((𝑅s 𝑈) ∈ Grp ∧ (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦) = (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑦)))
257239, 255, 256syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦) = (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑦)))
258117, 41, 118isprimroot 41596 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑦 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑦 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
259258biimpd 228 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑦 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑦 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
260259imp 405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝑦 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
261260simp2d 1140 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)))
262261ex 411 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈))))
26371eleq2d 2815 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑦 ∈ ((𝑅s 𝑈) PrimRoots 𝐾)))
264263imbi1d 340 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈))) ↔ (𝑦 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)))))
265262, 264mpbird 256 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈))))
266265imp 405 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)))
267266oveq2d 7442 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑦)) = (𝑍(.g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))))
268239, 241, 172syl2anc 582 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))) = (0g‘(𝑅s 𝑈)))
269267, 268eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅s 𝑈))(𝐾(.g‘(𝑅s 𝑈))𝑦)) = (0g‘(𝑅s 𝑈)))
270257, 269eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)))
271270fveq2d 6906 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)) = ((invg‘(𝑅s 𝑈))‘(0g‘(𝑅s 𝑈))))
272239, 177syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅s 𝑈))‘(0g‘(𝑅s 𝑈))) = (0g‘(𝑅s 𝑈)))
273271, 272eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)) = (0g‘(𝑅s 𝑈)))
274254, 273eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦) = (0g‘(𝑅s 𝑈)))
275252, 274oveq12d 7444 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1(.g‘(𝑅s 𝑈))𝑦)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)) = (𝑦(+g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))))
276156, 157, 171, 239, 247grpridd 18934 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑦(+g‘(𝑅s 𝑈))(0g‘(𝑅s 𝑈))) = 𝑦)
277275, 276eqtrd 2768 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1(.g‘(𝑅s 𝑈))𝑦)(+g‘(𝑅s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅s 𝑈))𝑦)) = 𝑦)
278250, 277eqtrd 2768 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅s 𝑈))𝑦) = 𝑦)
279238, 278eqtrd 2768 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘(𝑅s 𝑈))𝑦) = 𝑦)
280236, 279eqtrd 2768 . . . . . 6 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g𝑅)𝑦) = 𝑦)
281226, 280eqtr3d 2770 . . . . 5 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g𝑅)(𝐽(.g𝑅)𝑦)) = 𝑦)
282223, 281eqtrd 2768 . . . 4 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘(𝐽(.g𝑅)𝑦)) = 𝑦)
283211, 282eqtrd 2768 . . 3 ((𝜑𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘𝑦)) = 𝑦)
284283ralrimiva 3143 . 2 (𝜑 → ∀𝑦 ∈ (𝑅 PrimRoots 𝐾)(𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g𝑅)𝑛))‘𝑦)) = 𝑦)
28518, 32, 197, 2842fvidf1od 7313 1 (𝜑𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wrex 3067  {crab 3430  wss 3949   class class class wbr 5152  cmpt 5235  1-1-ontowf1o 6552  cfv 6553  (class class class)co 7426  cc 11144  1c1 11147   + caddc 11149   · cmul 11151  cmin 11482  -cneg 11483  cn 12250  0cn0 12510  cz 12596  cdvds 16238   gcd cgcd 16476  Basecbs 17187  s cress 17216  +gcplusg 17240  0gc0g 17428  Mndcmnd 18701  SubMndcsubmnd 18746  Grpcgrp 18897  invgcminusg 18898  .gcmg 19030  CMndccmn 19742  Abelcabl 19743   PrimRoots cprimroots 41594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-gcd 16477  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-grp 18900  df-minusg 18901  df-mulg 19031  df-cmn 19744  df-abl 19745  df-primroots 41595
This theorem is referenced by:  primrootscoprbij2  41606
  Copyright terms: Public domain W3C validator