Step | Hyp | Ref
| Expression |
1 | | primrootscoprbij.1 |
. . 3
⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) |
2 | | primrootscoprbij.2 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CMnd) |
3 | | primrootscoprbij.3 |
. . 3
⊢ (𝜑 → 𝐾 ∈ ℕ) |
4 | | primrootscoprbij.4 |
. . 3
⊢ (𝜑 → 𝐼 ∈ ℕ) |
5 | 4 | nnzd 12623 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℤ) |
6 | 3 | nnzd 12623 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) |
7 | | primrootscoprbij.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ ℕ) |
8 | 7 | nnzd 12623 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ ℤ) |
9 | | primrootscoprbij.6 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ ℤ) |
10 | 8, 9 | jca 510 |
. . . . . 6
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) |
11 | 5, 6, 10 | jca31 513 |
. . . . 5
⊢ (𝜑 → ((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ))) |
12 | | primrootscoprbij.7 |
. . . . . 6
⊢ (𝜑 → 1 = ((𝐼 · 𝐽) + (𝐾 · 𝑍))) |
13 | 12 | eqcomd 2734 |
. . . . 5
⊢ (𝜑 → ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1) |
14 | 11, 13 | jca 510 |
. . . 4
⊢ (𝜑 → (((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1)) |
15 | | bezoutr1 16547 |
. . . . 5
⊢ (((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) →
(((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1 → (𝐼 gcd 𝐾) = 1)) |
16 | 15 | imp 405 |
. . . 4
⊢ ((((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1) → (𝐼 gcd 𝐾) = 1) |
17 | 14, 16 | syl 17 |
. . 3
⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) |
18 | 1, 2, 3, 4, 17 | primrootscoprf 41604 |
. 2
⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)⟶(𝑅 PrimRoots 𝐾)) |
19 | | eqid 2728 |
. . 3
⊢ (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) |
20 | 8, 6 | jca 510 |
. . . . . 6
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
21 | 5, 9 | jca 510 |
. . . . . 6
⊢ (𝜑 → (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) |
22 | 20, 21 | jca 510 |
. . . . 5
⊢ (𝜑 → ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ))) |
23 | 7 | nncnd 12266 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ ℂ) |
24 | 4 | nncnd 12266 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ ℂ) |
25 | 23, 24 | mulcomd 11273 |
. . . . . . 7
⊢ (𝜑 → (𝐽 · 𝐼) = (𝐼 · 𝐽)) |
26 | 25 | oveq1d 7441 |
. . . . . 6
⊢ (𝜑 → ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = ((𝐼 · 𝐽) + (𝐾 · 𝑍))) |
27 | 26, 13 | eqtrd 2768 |
. . . . 5
⊢ (𝜑 → ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1) |
28 | 22, 27 | jca 510 |
. . . 4
⊢ (𝜑 → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1)) |
29 | | bezoutr1 16547 |
. . . . 5
⊢ (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) →
(((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1 → (𝐽 gcd 𝐾) = 1)) |
30 | 29 | imp 405 |
. . . 4
⊢ ((((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1) → (𝐽 gcd 𝐾) = 1) |
31 | 28, 30 | syl 17 |
. . 3
⊢ (𝜑 → (𝐽 gcd 𝐾) = 1) |
32 | 19, 2, 3, 7, 31 | primrootscoprf 41604 |
. 2
⊢ (𝜑 → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)):(𝑅 PrimRoots 𝐾)⟶(𝑅 PrimRoots 𝐾)) |
33 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚))) |
34 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = 𝑥) → 𝑚 = 𝑥) |
35 | 34 | oveq2d 7442 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = 𝑥) → (𝐼(.g‘𝑅)𝑚) = (𝐼(.g‘𝑅)𝑥)) |
36 | | simpr 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑥 ∈ (𝑅 PrimRoots 𝐾)) |
37 | 2 | cmnmndd 19766 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
38 | 37 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ Mnd) |
39 | 4 | nnnn0d 12570 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
40 | 39 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈
ℕ0) |
41 | 3 | nnnn0d 12570 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
42 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(.g‘𝑅) = (.g‘𝑅) |
43 | 2, 41, 42 | isprimroot 41596 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
44 | 43 | biimpd 228 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
45 | 44 | imp 405 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
46 | 45 | simp1d 1139 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑥 ∈ (Base‘𝑅)) |
47 | | eqid 2728 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
48 | 47, 42 | mulgnn0cl 19052 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ ℕ0
∧ 𝑥 ∈
(Base‘𝑅)) →
(𝐼(.g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
49 | 38, 40, 46, 48 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
50 | 33, 35, 36, 49 | fvmptd 7017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘𝑥) = (𝐼(.g‘𝑅)𝑥)) |
51 | 50 | fveq2d 6906 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐹‘𝑥)) = ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐼(.g‘𝑅)𝑥))) |
52 | | eqidd 2729 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))) |
53 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = (𝐼(.g‘𝑅)𝑥)) → 𝑛 = (𝐼(.g‘𝑅)𝑥)) |
54 | 53 | oveq2d 7442 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = (𝐼(.g‘𝑅)𝑥)) → (𝐽(.g‘𝑅)𝑛) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
55 | 2 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ CMnd) |
56 | 3 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℕ) |
57 | 4 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈ ℕ) |
58 | 17 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 gcd 𝐾) = 1) |
59 | | eqid 2728 |
. . . . . . 7
⊢ {𝑠 ∈ (Base‘𝑅) ∣ ∃𝑡 ∈ (Base‘𝑅)(𝑡(+g‘𝑅)𝑠) = (0g‘𝑅)} = {𝑠 ∈ (Base‘𝑅) ∣ ∃𝑡 ∈ (Base‘𝑅)(𝑡(+g‘𝑅)𝑠) = (0g‘𝑅)} |
60 | 55, 56, 57, 58, 36, 59 | primrootscoprmpow 41602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)𝑥) ∈ (𝑅 PrimRoots 𝐾)) |
61 | 7 | nnnn0d 12570 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
62 | 61 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈
ℕ0) |
63 | 47, 42 | mulgnn0cl 19052 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐽 ∈ ℕ0
∧ (𝐼(.g‘𝑅)𝑥) ∈ (Base‘𝑅)) → (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥)) ∈ (Base‘𝑅)) |
64 | 38, 62, 49, 63 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥)) ∈ (Base‘𝑅)) |
65 | 52, 54, 60, 64 | fvmptd 7017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐼(.g‘𝑅)𝑥)) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
66 | 62, 40, 46 | 3jca 1125 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0
∧ 𝑥 ∈
(Base‘𝑅))) |
67 | 47, 42 | mulgnn0ass 19072 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ (𝐽 ∈ ℕ0
∧ 𝐼 ∈
ℕ0 ∧ 𝑥
∈ (Base‘𝑅)))
→ ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
68 | 38, 66, 67 | syl2anc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
69 | | primrootscoprbij.8 |
. . . . . . . . . . . 12
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
70 | 2, 3, 69 | primrootsunit 41600 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
71 | 70 | simpld 493 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
72 | 71 | eleq2d 2815 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
73 | 72 | biimpd 228 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
74 | 70 | simprd 494 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
75 | | ablgrp 19747 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ↾s 𝑈) ∈ Abel → (𝑅 ↾s 𝑈) ∈ Grp) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
77 | | grpmnd 18904 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ↾s 𝑈) ∈ Grp → (𝑅 ↾s 𝑈) ∈ Mnd) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Mnd) |
79 | 37, 78 | jca 510 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd)) |
80 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
81 | 80 | eleq2d 2815 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑓 ∈ 𝑈 ↔ 𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
82 | 81 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑓 ∈ 𝑈 → 𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
83 | 82 | imp 405 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
84 | | oveq2 7434 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑓 → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)𝑓)) |
85 | 84 | eqeq1d 2730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑓 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
86 | 85 | rexbidv 3176 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑓 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
87 | 86 | elrab 3684 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑓 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
88 | 87 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} → (𝑓 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
89 | 88 | simpld 493 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} → 𝑓 ∈ (Base‘𝑅)) |
90 | 83, 89 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ (Base‘𝑅)) |
91 | 90 | ex 411 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑓 ∈ 𝑈 → 𝑓 ∈ (Base‘𝑅))) |
92 | 91 | ssrdv 3988 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑅)) |
93 | | oveq2 7434 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (0g‘𝑅) → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)(0g‘𝑅))) |
94 | 93 | eqeq1d 2730 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (0g‘𝑅) → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
95 | 94 | rexbidv 3176 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (0g‘𝑅) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
96 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘𝑅) = (0g‘𝑅) |
97 | 47, 96 | mndidcl 18716 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ (Base‘𝑅)) |
98 | 37, 97 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
99 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → 𝑖 = (0g‘𝑅)) |
100 | 99 | oveq1d 7441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → (𝑖(+g‘𝑅)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅))) |
101 | 100 | eqeq1d 2730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → ((𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅) ↔ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
102 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(+g‘𝑅) = (+g‘𝑅) |
103 | 47, 102, 96 | mndlid 18721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Mnd ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
104 | 37, 98, 103 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
105 | 98, 101, 104 | rspcedvd 3613 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
106 | 95, 98, 105 | elrabd 3686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0g‘𝑅) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
107 | 80 | eleq2d 2815 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
((0g‘𝑅)
∈ 𝑈 ↔
(0g‘𝑅)
∈ {𝑎 ∈
(Base‘𝑅) ∣
∃𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
108 | 106, 107 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0g‘𝑅) ∈ 𝑈) |
109 | 92, 108 | jca 510 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈)) |
110 | 79, 109 | jca 510 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈))) |
111 | 47, 96 | issubmndb 18764 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (SubMnd‘𝑅) ↔ ((𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈))) |
112 | 110, 111 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ (SubMnd‘𝑅)) |
113 | 112 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅)) |
114 | 61 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝐽 ∈
ℕ0) |
115 | 39 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝐼 ∈
ℕ0) |
116 | 114, 115 | nn0mulcld 12575 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) ∈
ℕ0) |
117 | 74 | ablcmnd 19750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
118 | | eqid 2728 |
. . . . . . . . . . . . . . . . 17
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
119 | 117, 41, 118 | isprimroot 41596 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
120 | 119 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
121 | 120 | imp 405 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
122 | 121 | simp1d 1139 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈))) |
123 | | eqid 2728 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ↾s 𝑈) = (𝑅 ↾s 𝑈) |
124 | 123, 47 | ressbas2 17225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ⊆ (Base‘𝑅) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
125 | 92, 124 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
126 | 125 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
127 | 126 | eleq2d 2815 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
128 | 122, 127 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑥 ∈ 𝑈) |
129 | 42, 123, 118 | submmulg 19080 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ (𝐽 · 𝐼) ∈ ℕ0 ∧ 𝑥 ∈ 𝑈) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥)) |
130 | 113, 116,
128, 129 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥)) |
131 | 25 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) = (𝐼 · 𝐽)) |
132 | 24, 23 | mulcld 11272 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐼 · 𝐽) ∈ ℂ) |
133 | 3 | nncnd 12266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℂ) |
134 | 9 | zcnd 12705 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑍 ∈ ℂ) |
135 | 133, 134 | mulcld 11272 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐾 · 𝑍) ∈ ℂ) |
136 | | 1cnd 11247 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 1 ∈
ℂ) |
137 | 132, 135,
136 | addlsub 11668 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1 ↔ (𝐼 · 𝐽) = (1 − (𝐾 · 𝑍)))) |
138 | 13, 137 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐼 · 𝐽) = (1 − (𝐾 · 𝑍))) |
139 | 133, 134 | mulcomd 11273 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐾 · 𝑍) = (𝑍 · 𝐾)) |
140 | 139 | oveq2d 7442 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 − (𝐾 · 𝑍)) = (1 − (𝑍 · 𝐾))) |
141 | 138, 140 | eqtrd 2768 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 · 𝐽) = (1 − (𝑍 · 𝐾))) |
142 | 139, 135 | eqeltrrd 2830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑍 · 𝐾) ∈ ℂ) |
143 | 136, 142 | negsubd 11615 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 + -(𝑍 · 𝐾)) = (1 − (𝑍 · 𝐾))) |
144 | 143 | eqcomd 2734 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − (𝑍 · 𝐾)) = (1 + -(𝑍 · 𝐾))) |
145 | 141, 144 | eqtrd 2768 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾))) |
146 | 145 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾))) |
147 | 131, 146 | eqtrd 2768 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) = (1 + -(𝑍 · 𝐾))) |
148 | 147 | oveq1d 7441 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥) = ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥)) |
149 | 76 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑅 ↾s 𝑈) ∈ Grp) |
150 | | 1zzd 12631 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 1 ∈ ℤ) |
151 | 9 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑍 ∈ ℤ) |
152 | 6 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝐾 ∈ ℤ) |
153 | 151, 152 | zmulcld 12710 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍 · 𝐾) ∈ ℤ) |
154 | 153 | znegcld 12706 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → -(𝑍 · 𝐾) ∈ ℤ) |
155 | 150, 154,
122 | 3jca 1125 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
156 | | eqid 2728 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
157 | | eqid 2728 |
. . . . . . . . . . . . . . 15
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
158 | 156, 118,
157 | mulgdir 19068 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (1 ∈
ℤ ∧ -(𝑍 ·
𝐾) ∈ ℤ ∧
𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥) = ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
159 | 149, 155,
158 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥) = ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
160 | 156, 118 | mulg1 19043 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) →
(1(.g‘(𝑅
↾s 𝑈))𝑥) = 𝑥) |
161 | 122, 160 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (1(.g‘(𝑅 ↾s 𝑈))𝑥) = 𝑥) |
162 | | eqid 2728 |
. . . . . . . . . . . . . . . . 17
⊢
(invg‘(𝑅 ↾s 𝑈)) = (invg‘(𝑅 ↾s 𝑈)) |
163 | 156, 118,
162 | mulgneg 19054 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 · 𝐾) ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈))) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
164 | 149, 153,
122, 163 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
165 | 161, 164 | oveq12d 7444 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = (𝑥(+g‘(𝑅 ↾s 𝑈))((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)))) |
166 | 151, 152,
122 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
167 | 156, 118 | mulgass 19073 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥))) |
168 | 149, 166,
167 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥))) |
169 | 121 | simp2d 1140 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈))) |
170 | 169 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥)) = (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
171 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0g‘(𝑅 ↾s 𝑈)) = (0g‘(𝑅 ↾s 𝑈)) |
172 | 156, 118,
171 | mulgz 19064 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑍 ∈ ℤ) → (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
173 | 149, 151,
172 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
174 | 170, 173 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥)) = (0g‘(𝑅 ↾s 𝑈))) |
175 | 168, 174 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈))) |
176 | 175 | fveq2d 6906 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈)))) |
177 | 171, 162 | grpinvid 18963 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ↾s 𝑈) ∈ Grp →
((invg‘(𝑅
↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
178 | 76, 177 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
((invg‘(𝑅
↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
179 | 178 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
180 | 176, 179 | eqtrd 2768 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = (0g‘(𝑅 ↾s 𝑈))) |
181 | 180 | oveq2d 7442 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅 ↾s 𝑈))((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) = (𝑥(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
182 | 149, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑅 ↾s 𝑈) ∈ Mnd) |
183 | 156, 157,
171 | mndrid 18722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ↾s 𝑈) ∈ Mnd ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈))) → (𝑥(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = 𝑥) |
184 | 182, 122,
183 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = 𝑥) |
185 | 181, 184 | eqtrd 2768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅 ↾s 𝑈))((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) = 𝑥) |
186 | 165, 185 | eqtrd 2768 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = 𝑥) |
187 | 159, 186 | eqtrd 2768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥) = 𝑥) |
188 | 148, 187 | eqtrd 2768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥) = 𝑥) |
189 | 130, 188 | eqtrd 2768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥) |
190 | 189 | ex 411 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥)) |
191 | 190 | imim2d 57 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (𝑅 PrimRoots 𝐾) → 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥))) |
192 | 73, 191 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥)) |
193 | 192 | imp 405 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥) |
194 | 68, 193 | eqtr3d 2770 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥)) = 𝑥) |
195 | 65, 194 | eqtrd 2768 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐼(.g‘𝑅)𝑥)) = 𝑥) |
196 | 51, 195 | eqtrd 2768 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐹‘𝑥)) = 𝑥) |
197 | 196 | ralrimiva 3143 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (𝑅 PrimRoots 𝐾)((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐹‘𝑥)) = 𝑥) |
198 | | eqidd 2729 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))) |
199 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = 𝑦) → 𝑛 = 𝑦) |
200 | 199 | oveq2d 7442 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = 𝑦) → (𝐽(.g‘𝑅)𝑛) = (𝐽(.g‘𝑅)𝑦)) |
201 | | simpr 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (𝑅 PrimRoots 𝐾)) |
202 | 37 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ Mnd) |
203 | 61 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈
ℕ0) |
204 | 2, 41, 42 | isprimroot 41596 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑦) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑦) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
205 | 204 | biimpd 228 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑦) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑦) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
206 | 205 | imp 405 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑦) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑦) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
207 | 206 | simp1d 1139 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (Base‘𝑅)) |
208 | 47, 42 | mulgnn0cl 19052 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐽 ∈ ℕ0
∧ 𝑦 ∈
(Base‘𝑅)) →
(𝐽(.g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
209 | 202, 203,
207, 208 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
210 | 198, 200,
201, 209 | fvmptd 7017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦) = (𝐽(.g‘𝑅)𝑦)) |
211 | 210 | fveq2d 6906 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦)) = (𝐹‘(𝐽(.g‘𝑅)𝑦))) |
212 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚))) |
213 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = (𝐽(.g‘𝑅)𝑦)) → 𝑚 = (𝐽(.g‘𝑅)𝑦)) |
214 | 213 | oveq2d 7442 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = (𝐽(.g‘𝑅)𝑦)) → (𝐼(.g‘𝑅)𝑚) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
215 | 2 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ CMnd) |
216 | 3 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℕ) |
217 | 7 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈ ℕ) |
218 | 31 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽 gcd 𝐾) = 1) |
219 | 215, 216,
217, 218, 201, 59 | primrootscoprmpow 41602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)𝑦) ∈ (𝑅 PrimRoots 𝐾)) |
220 | 39 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈
ℕ0) |
221 | 47, 42 | mulgnn0cl 19052 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ ℕ0
∧ (𝐽(.g‘𝑅)𝑦) ∈ (Base‘𝑅)) → (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦)) ∈ (Base‘𝑅)) |
222 | 202, 220,
209, 221 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦)) ∈ (Base‘𝑅)) |
223 | 212, 214,
219, 222 | fvmptd 7017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘(𝐽(.g‘𝑅)𝑦)) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
224 | 220, 203,
207 | 3jca 1125 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 ∈ ℕ0 ∧ 𝐽 ∈ ℕ0
∧ 𝑦 ∈
(Base‘𝑅))) |
225 | 47, 42 | mulgnn0ass 19072 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ (𝐼 ∈ ℕ0
∧ 𝐽 ∈
ℕ0 ∧ 𝑦
∈ (Base‘𝑅)))
→ ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
226 | 202, 224,
225 | syl2anc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
227 | 112 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅)) |
228 | 220, 203 | nn0mulcld 12575 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 · 𝐽) ∈
ℕ0) |
229 | 128 | ex 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → 𝑥 ∈ 𝑈)) |
230 | 229 | ssrdv 3988 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ⊆ 𝑈) |
231 | 71 | sseq1d 4013 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) ⊆ 𝑈 ↔ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ⊆ 𝑈)) |
232 | 230, 231 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) ⊆ 𝑈) |
233 | 232 | sseld 3981 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → 𝑦 ∈ 𝑈)) |
234 | 233 | imp 405 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ 𝑈) |
235 | 42, 123, 118 | submmulg 19080 |
. . . . . . . 8
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ (𝐼 · 𝐽) ∈ ℕ0 ∧ 𝑦 ∈ 𝑈) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦)) |
236 | 227, 228,
234, 235 | syl3anc 1368 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦)) |
237 | 145 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾))) |
238 | 237 | oveq1d 7441 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦) = ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦)) |
239 | 76 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑅 ↾s 𝑈) ∈ Grp) |
240 | | 1zzd 12631 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 1 ∈ ℤ) |
241 | 9 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑍 ∈ ℤ) |
242 | 6 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℤ) |
243 | 241, 242 | zmulcld 12710 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍 · 𝐾) ∈ ℤ) |
244 | 243 | znegcld 12706 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → -(𝑍 · 𝐾) ∈ ℤ) |
245 | 232, 125 | sseqtrd 4022 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) ⊆ (Base‘(𝑅 ↾s 𝑈))) |
246 | 245 | sseld 3981 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
247 | 246 | imp 405 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈))) |
248 | 240, 244,
247 | 3jca 1125 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
249 | 156, 118,
157 | mulgdir 19068 |
. . . . . . . . . 10
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (1 ∈
ℤ ∧ -(𝑍 ·
𝐾) ∈ ℤ ∧
𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦) = ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
250 | 239, 248,
249 | syl2anc 582 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦) = ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
251 | 156, 118 | mulg1 19043 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) →
(1(.g‘(𝑅
↾s 𝑈))𝑦) = 𝑦) |
252 | 247, 251 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (1(.g‘(𝑅 ↾s 𝑈))𝑦) = 𝑦) |
253 | 156, 118,
162 | mulgneg 19054 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈))) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
254 | 239, 243,
247, 253 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
255 | 241, 242,
247 | 3jca 1125 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
256 | 156, 118 | mulgass 19073 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦))) |
257 | 239, 255,
256 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦))) |
258 | 117, 41, 118 | isprimroot 41596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
259 | 258 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
260 | 259 | imp 405 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
261 | 260 | simp2d 1140 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
262 | 261 | ex 411 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)))) |
263 | 71 | eleq2d 2815 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
264 | 263 | imbi1d 340 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) ↔ (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))))) |
265 | 262, 264 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)))) |
266 | 265 | imp 405 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
267 | 266 | oveq2d 7442 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦)) = (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
268 | 239, 241,
172 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
269 | 267, 268 | eqtrd 2768 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦)) = (0g‘(𝑅 ↾s 𝑈))) |
270 | 257, 269 | eqtrd 2768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
271 | 270 | fveq2d 6906 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈)))) |
272 | 239, 177 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
273 | 271, 272 | eqtrd 2768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = (0g‘(𝑅 ↾s 𝑈))) |
274 | 254, 273 | eqtrd 2768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
275 | 252, 274 | oveq12d 7444 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = (𝑦(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
276 | 156, 157,
171, 239, 247 | grpridd 18934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑦(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = 𝑦) |
277 | 275, 276 | eqtrd 2768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = 𝑦) |
278 | 250, 277 | eqtrd 2768 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦) = 𝑦) |
279 | 238, 278 | eqtrd 2768 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦) = 𝑦) |
280 | 236, 279 | eqtrd 2768 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = 𝑦) |
281 | 226, 280 | eqtr3d 2770 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦)) = 𝑦) |
282 | 223, 281 | eqtrd 2768 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘(𝐽(.g‘𝑅)𝑦)) = 𝑦) |
283 | 211, 282 | eqtrd 2768 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦)) = 𝑦) |
284 | 283 | ralrimiva 3143 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝑅 PrimRoots 𝐾)(𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦)) = 𝑦) |
285 | 18, 32, 197, 284 | 2fvidf1od 7313 |
1
⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |