| Step | Hyp | Ref
| Expression |
| 1 | | primrootscoprbij.1 |
. . 3
⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) |
| 2 | | primrootscoprbij.2 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 3 | | primrootscoprbij.3 |
. . 3
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 4 | | primrootscoprbij.4 |
. . 3
⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 5 | 4 | nnzd 12640 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 6 | 3 | nnzd 12640 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 7 | | primrootscoprbij.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 8 | 7 | nnzd 12640 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 9 | | primrootscoprbij.6 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ ℤ) |
| 10 | 8, 9 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) |
| 11 | 5, 6, 10 | jca31 514 |
. . . . 5
⊢ (𝜑 → ((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ))) |
| 12 | | primrootscoprbij.7 |
. . . . . 6
⊢ (𝜑 → 1 = ((𝐼 · 𝐽) + (𝐾 · 𝑍))) |
| 13 | 12 | eqcomd 2743 |
. . . . 5
⊢ (𝜑 → ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1) |
| 14 | 11, 13 | jca 511 |
. . . 4
⊢ (𝜑 → (((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1)) |
| 15 | | bezoutr1 16606 |
. . . . 5
⊢ (((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) →
(((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1 → (𝐼 gcd 𝐾) = 1)) |
| 16 | 15 | imp 406 |
. . . 4
⊢ ((((𝐼 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1) → (𝐼 gcd 𝐾) = 1) |
| 17 | 14, 16 | syl 17 |
. . 3
⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) |
| 18 | 1, 2, 3, 4, 17 | primrootscoprf 42102 |
. 2
⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)⟶(𝑅 PrimRoots 𝐾)) |
| 19 | | eqid 2737 |
. . 3
⊢ (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) |
| 20 | 8, 6 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
| 21 | 5, 9 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) |
| 22 | 20, 21 | jca 511 |
. . . . 5
⊢ (𝜑 → ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ))) |
| 23 | 7 | nncnd 12282 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 24 | 4 | nncnd 12282 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 25 | 23, 24 | mulcomd 11282 |
. . . . . . 7
⊢ (𝜑 → (𝐽 · 𝐼) = (𝐼 · 𝐽)) |
| 26 | 25 | oveq1d 7446 |
. . . . . 6
⊢ (𝜑 → ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = ((𝐼 · 𝐽) + (𝐾 · 𝑍))) |
| 27 | 26, 13 | eqtrd 2777 |
. . . . 5
⊢ (𝜑 → ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1) |
| 28 | 22, 27 | jca 511 |
. . . 4
⊢ (𝜑 → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1)) |
| 29 | | bezoutr1 16606 |
. . . . 5
⊢ (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) →
(((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1 → (𝐽 gcd 𝐾) = 1)) |
| 30 | 29 | imp 406 |
. . . 4
⊢ ((((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝑍 ∈ ℤ)) ∧ ((𝐽 · 𝐼) + (𝐾 · 𝑍)) = 1) → (𝐽 gcd 𝐾) = 1) |
| 31 | 28, 30 | syl 17 |
. . 3
⊢ (𝜑 → (𝐽 gcd 𝐾) = 1) |
| 32 | 19, 2, 3, 7, 31 | primrootscoprf 42102 |
. 2
⊢ (𝜑 → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)):(𝑅 PrimRoots 𝐾)⟶(𝑅 PrimRoots 𝐾)) |
| 33 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚))) |
| 34 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = 𝑥) → 𝑚 = 𝑥) |
| 35 | 34 | oveq2d 7447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = 𝑥) → (𝐼(.g‘𝑅)𝑚) = (𝐼(.g‘𝑅)𝑥)) |
| 36 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑥 ∈ (𝑅 PrimRoots 𝐾)) |
| 37 | 2 | cmnmndd 19822 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 38 | 37 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ Mnd) |
| 39 | 4 | nnnn0d 12587 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
| 40 | 39 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈
ℕ0) |
| 41 | 3 | nnnn0d 12587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 42 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(.g‘𝑅) = (.g‘𝑅) |
| 43 | 2, 41, 42 | isprimroot 42094 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 44 | 43 | biimpd 229 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 45 | 44 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
| 46 | 45 | simp1d 1143 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑥 ∈ (Base‘𝑅)) |
| 47 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 48 | 47, 42 | mulgnn0cl 19108 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ ℕ0
∧ 𝑥 ∈
(Base‘𝑅)) →
(𝐼(.g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 49 | 38, 40, 46, 48 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 50 | 33, 35, 36, 49 | fvmptd 7023 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘𝑥) = (𝐼(.g‘𝑅)𝑥)) |
| 51 | 50 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐹‘𝑥)) = ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐼(.g‘𝑅)𝑥))) |
| 52 | | eqidd 2738 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))) |
| 53 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = (𝐼(.g‘𝑅)𝑥)) → 𝑛 = (𝐼(.g‘𝑅)𝑥)) |
| 54 | 53 | oveq2d 7447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = (𝐼(.g‘𝑅)𝑥)) → (𝐽(.g‘𝑅)𝑛) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
| 55 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ CMnd) |
| 56 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℕ) |
| 57 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈ ℕ) |
| 58 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 gcd 𝐾) = 1) |
| 59 | | eqid 2737 |
. . . . . . 7
⊢ {𝑠 ∈ (Base‘𝑅) ∣ ∃𝑡 ∈ (Base‘𝑅)(𝑡(+g‘𝑅)𝑠) = (0g‘𝑅)} = {𝑠 ∈ (Base‘𝑅) ∣ ∃𝑡 ∈ (Base‘𝑅)(𝑡(+g‘𝑅)𝑠) = (0g‘𝑅)} |
| 60 | 55, 56, 57, 58, 36, 59 | primrootscoprmpow 42100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)𝑥) ∈ (𝑅 PrimRoots 𝐾)) |
| 61 | 7 | nnnn0d 12587 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 62 | 61 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈
ℕ0) |
| 63 | 47, 42 | mulgnn0cl 19108 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐽 ∈ ℕ0
∧ (𝐼(.g‘𝑅)𝑥) ∈ (Base‘𝑅)) → (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥)) ∈ (Base‘𝑅)) |
| 64 | 38, 62, 49, 63 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥)) ∈ (Base‘𝑅)) |
| 65 | 52, 54, 60, 64 | fvmptd 7023 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐼(.g‘𝑅)𝑥)) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
| 66 | 62, 40, 46 | 3jca 1129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0
∧ 𝑥 ∈
(Base‘𝑅))) |
| 67 | 47, 42 | mulgnn0ass 19128 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ (𝐽 ∈ ℕ0
∧ 𝐼 ∈
ℕ0 ∧ 𝑥
∈ (Base‘𝑅)))
→ ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
| 68 | 38, 66, 67 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥))) |
| 69 | | primrootscoprbij.8 |
. . . . . . . . . . . 12
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
| 70 | 2, 3, 69 | primrootsunit 42099 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
| 71 | 70 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
| 72 | 71 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
| 73 | 72 | biimpd 229 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
| 74 | 70 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
| 75 | | ablgrp 19803 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ↾s 𝑈) ∈ Abel → (𝑅 ↾s 𝑈) ∈ Grp) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
| 77 | | grpmnd 18958 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ↾s 𝑈) ∈ Grp → (𝑅 ↾s 𝑈) ∈ Mnd) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Mnd) |
| 79 | 37, 78 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd)) |
| 80 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
| 81 | 80 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑓 ∈ 𝑈 ↔ 𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
| 82 | 81 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑓 ∈ 𝑈 → 𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
| 83 | 82 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
| 84 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑓 → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)𝑓)) |
| 85 | 84 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑓 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
| 86 | 85 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑓 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
| 87 | 86 | elrab 3692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑓 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
| 88 | 87 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} → (𝑓 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑓) = (0g‘𝑅))) |
| 89 | 88 | simpld 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} → 𝑓 ∈ (Base‘𝑅)) |
| 90 | 83, 89 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ (Base‘𝑅)) |
| 91 | 90 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑓 ∈ 𝑈 → 𝑓 ∈ (Base‘𝑅))) |
| 92 | 91 | ssrdv 3989 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑅)) |
| 93 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (0g‘𝑅) → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)(0g‘𝑅))) |
| 94 | 93 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (0g‘𝑅) → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
| 95 | 94 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (0g‘𝑅) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
| 96 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 97 | 47, 96 | mndidcl 18762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 98 | 37, 97 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 99 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → 𝑖 = (0g‘𝑅)) |
| 100 | 99 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → (𝑖(+g‘𝑅)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅))) |
| 101 | 100 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → ((𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅) ↔ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
| 102 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 103 | 47, 102, 96 | mndlid 18767 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Mnd ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 104 | 37, 98, 103 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 105 | 98, 101, 104 | rspcedvd 3624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 106 | 95, 98, 105 | elrabd 3694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0g‘𝑅) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
| 107 | 80 | eleq2d 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
((0g‘𝑅)
∈ 𝑈 ↔
(0g‘𝑅)
∈ {𝑎 ∈
(Base‘𝑅) ∣
∃𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
| 108 | 106, 107 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0g‘𝑅) ∈ 𝑈) |
| 109 | 92, 108 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈)) |
| 110 | 79, 109 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈))) |
| 111 | 47, 96 | issubmndb 18818 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (SubMnd‘𝑅) ↔ ((𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈))) |
| 112 | 110, 111 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ (SubMnd‘𝑅)) |
| 113 | 112 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅)) |
| 114 | 61 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝐽 ∈
ℕ0) |
| 115 | 39 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝐼 ∈
ℕ0) |
| 116 | 114, 115 | nn0mulcld 12592 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) ∈
ℕ0) |
| 117 | 74 | ablcmnd 19806 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
| 118 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
| 119 | 117, 41, 118 | isprimroot 42094 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 120 | 119 | biimpd 229 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 121 | 120 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
| 122 | 121 | simp1d 1143 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 123 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ↾s 𝑈) = (𝑅 ↾s 𝑈) |
| 124 | 123, 47 | ressbas2 17283 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ⊆ (Base‘𝑅) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
| 125 | 92, 124 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
| 126 | 125 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
| 127 | 126 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 128 | 122, 127 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑥 ∈ 𝑈) |
| 129 | 42, 123, 118 | submmulg 19136 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ (𝐽 · 𝐼) ∈ ℕ0 ∧ 𝑥 ∈ 𝑈) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥)) |
| 130 | 113, 116,
128, 129 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥)) |
| 131 | 25 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) = (𝐼 · 𝐽)) |
| 132 | 24, 23 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐼 · 𝐽) ∈ ℂ) |
| 133 | 3 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 134 | 9 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑍 ∈ ℂ) |
| 135 | 133, 134 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐾 · 𝑍) ∈ ℂ) |
| 136 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 1 ∈
ℂ) |
| 137 | 132, 135,
136 | addlsub 11679 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝐼 · 𝐽) + (𝐾 · 𝑍)) = 1 ↔ (𝐼 · 𝐽) = (1 − (𝐾 · 𝑍)))) |
| 138 | 13, 137 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐼 · 𝐽) = (1 − (𝐾 · 𝑍))) |
| 139 | 133, 134 | mulcomd 11282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐾 · 𝑍) = (𝑍 · 𝐾)) |
| 140 | 139 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 − (𝐾 · 𝑍)) = (1 − (𝑍 · 𝐾))) |
| 141 | 138, 140 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 · 𝐽) = (1 − (𝑍 · 𝐾))) |
| 142 | 139, 135 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑍 · 𝐾) ∈ ℂ) |
| 143 | 136, 142 | negsubd 11626 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 + -(𝑍 · 𝐾)) = (1 − (𝑍 · 𝐾))) |
| 144 | 143 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − (𝑍 · 𝐾)) = (1 + -(𝑍 · 𝐾))) |
| 145 | 141, 144 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾))) |
| 146 | 145 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾))) |
| 147 | 131, 146 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐽 · 𝐼) = (1 + -(𝑍 · 𝐾))) |
| 148 | 147 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥) = ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥)) |
| 149 | 76 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑅 ↾s 𝑈) ∈ Grp) |
| 150 | | 1zzd 12648 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 1 ∈ ℤ) |
| 151 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑍 ∈ ℤ) |
| 152 | 6 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝐾 ∈ ℤ) |
| 153 | 151, 152 | zmulcld 12728 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍 · 𝐾) ∈ ℤ) |
| 154 | 153 | znegcld 12724 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → -(𝑍 · 𝐾) ∈ ℤ) |
| 155 | 150, 154,
122 | 3jca 1129 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 156 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
| 157 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
| 158 | 156, 118,
157 | mulgdir 19124 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (1 ∈
ℤ ∧ -(𝑍 ·
𝐾) ∈ ℤ ∧
𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥) = ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
| 159 | 149, 155,
158 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥) = ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
| 160 | 156, 118 | mulg1 19099 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)) →
(1(.g‘(𝑅
↾s 𝑈))𝑥) = 𝑥) |
| 161 | 122, 160 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (1(.g‘(𝑅 ↾s 𝑈))𝑥) = 𝑥) |
| 162 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(invg‘(𝑅 ↾s 𝑈)) = (invg‘(𝑅 ↾s 𝑈)) |
| 163 | 156, 118,
162 | mulgneg 19110 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 · 𝐾) ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈))) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
| 164 | 149, 153,
122, 163 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) |
| 165 | 161, 164 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = (𝑥(+g‘(𝑅 ↾s 𝑈))((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)))) |
| 166 | 151, 152,
122 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 167 | 156, 118 | mulgass 19129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥))) |
| 168 | 149, 166,
167 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥))) |
| 169 | 121 | simp2d 1144 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈))) |
| 170 | 169 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥)) = (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
| 171 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0g‘(𝑅 ↾s 𝑈)) = (0g‘(𝑅 ↾s 𝑈)) |
| 172 | 156, 118,
171 | mulgz 19120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑍 ∈ ℤ) → (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
| 173 | 149, 151,
172 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
| 174 | 170, 173 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑥)) = (0g‘(𝑅 ↾s 𝑈))) |
| 175 | 168, 174 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥) = (0g‘(𝑅 ↾s 𝑈))) |
| 176 | 175 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈)))) |
| 177 | 171, 162 | grpinvid 19017 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ↾s 𝑈) ∈ Grp →
((invg‘(𝑅
↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
| 178 | 76, 177 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
((invg‘(𝑅
↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
| 179 | 178 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
| 180 | 176, 179 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = (0g‘(𝑅 ↾s 𝑈))) |
| 181 | 180 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅 ↾s 𝑈))((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) = (𝑥(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
| 182 | 149, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑅 ↾s 𝑈) ∈ Mnd) |
| 183 | 156, 157,
171 | mndrid 18768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ↾s 𝑈) ∈ Mnd ∧ 𝑥 ∈ (Base‘(𝑅 ↾s 𝑈))) → (𝑥(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = 𝑥) |
| 184 | 182, 122,
183 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = 𝑥) |
| 185 | 181, 184 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥(+g‘(𝑅 ↾s 𝑈))((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥))) = 𝑥) |
| 186 | 165, 185 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑥)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑥)) = 𝑥) |
| 187 | 159, 186 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑥) = 𝑥) |
| 188 | 148, 187 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘(𝑅 ↾s 𝑈))𝑥) = 𝑥) |
| 189 | 130, 188 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥) |
| 190 | 189 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥)) |
| 191 | 190 | imim2d 57 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (𝑅 PrimRoots 𝐾) → 𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥))) |
| 192 | 73, 191 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑅 PrimRoots 𝐾) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥)) |
| 193 | 192 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐽 · 𝐼)(.g‘𝑅)𝑥) = 𝑥) |
| 194 | 68, 193 | eqtr3d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)(𝐼(.g‘𝑅)𝑥)) = 𝑥) |
| 195 | 65, 194 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐼(.g‘𝑅)𝑥)) = 𝑥) |
| 196 | 51, 195 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐹‘𝑥)) = 𝑥) |
| 197 | 196 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (𝑅 PrimRoots 𝐾)((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘(𝐹‘𝑥)) = 𝑥) |
| 198 | | eqidd 2738 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛)) = (𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))) |
| 199 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = 𝑦) → 𝑛 = 𝑦) |
| 200 | 199 | oveq2d 7447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑛 = 𝑦) → (𝐽(.g‘𝑅)𝑛) = (𝐽(.g‘𝑅)𝑦)) |
| 201 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (𝑅 PrimRoots 𝐾)) |
| 202 | 37 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ Mnd) |
| 203 | 61 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈
ℕ0) |
| 204 | 2, 41, 42 | isprimroot 42094 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑦) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑦) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 205 | 204 | biimpd 229 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑦) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑦) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 206 | 205 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑦 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑦) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑦) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
| 207 | 206 | simp1d 1143 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (Base‘𝑅)) |
| 208 | 47, 42 | mulgnn0cl 19108 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐽 ∈ ℕ0
∧ 𝑦 ∈
(Base‘𝑅)) →
(𝐽(.g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 209 | 202, 203,
207, 208 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 210 | 198, 200,
201, 209 | fvmptd 7023 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦) = (𝐽(.g‘𝑅)𝑦)) |
| 211 | 210 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦)) = (𝐹‘(𝐽(.g‘𝑅)𝑦))) |
| 212 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚))) |
| 213 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = (𝐽(.g‘𝑅)𝑦)) → 𝑚 = (𝐽(.g‘𝑅)𝑦)) |
| 214 | 213 | oveq2d 7447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑚 = (𝐽(.g‘𝑅)𝑦)) → (𝐼(.g‘𝑅)𝑚) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
| 215 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ CMnd) |
| 216 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℕ) |
| 217 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐽 ∈ ℕ) |
| 218 | 31 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽 gcd 𝐾) = 1) |
| 219 | 215, 216,
217, 218, 201, 59 | primrootscoprmpow 42100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐽(.g‘𝑅)𝑦) ∈ (𝑅 PrimRoots 𝐾)) |
| 220 | 39 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐼 ∈
ℕ0) |
| 221 | 47, 42 | mulgnn0cl 19108 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ ℕ0
∧ (𝐽(.g‘𝑅)𝑦) ∈ (Base‘𝑅)) → (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦)) ∈ (Base‘𝑅)) |
| 222 | 202, 220,
209, 221 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦)) ∈ (Base‘𝑅)) |
| 223 | 212, 214,
219, 222 | fvmptd 7023 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘(𝐽(.g‘𝑅)𝑦)) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
| 224 | 220, 203,
207 | 3jca 1129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 ∈ ℕ0 ∧ 𝐽 ∈ ℕ0
∧ 𝑦 ∈
(Base‘𝑅))) |
| 225 | 47, 42 | mulgnn0ass 19128 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ (𝐼 ∈ ℕ0
∧ 𝐽 ∈
ℕ0 ∧ 𝑦
∈ (Base‘𝑅)))
→ ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
| 226 | 202, 224,
225 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦))) |
| 227 | 112 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅)) |
| 228 | 220, 203 | nn0mulcld 12592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 · 𝐽) ∈
ℕ0) |
| 229 | 128 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → 𝑥 ∈ 𝑈)) |
| 230 | 229 | ssrdv 3989 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ⊆ 𝑈) |
| 231 | 71 | sseq1d 4015 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) ⊆ 𝑈 ↔ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ⊆ 𝑈)) |
| 232 | 230, 231 | mpbird 257 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) ⊆ 𝑈) |
| 233 | 232 | sseld 3982 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → 𝑦 ∈ 𝑈)) |
| 234 | 233 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ 𝑈) |
| 235 | 42, 123, 118 | submmulg 19136 |
. . . . . . . 8
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ (𝐼 · 𝐽) ∈ ℕ0 ∧ 𝑦 ∈ 𝑈) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦)) |
| 236 | 227, 228,
234, 235 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦)) |
| 237 | 145 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼 · 𝐽) = (1 + -(𝑍 · 𝐾))) |
| 238 | 237 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦) = ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦)) |
| 239 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑅 ↾s 𝑈) ∈ Grp) |
| 240 | | 1zzd 12648 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 1 ∈ ℤ) |
| 241 | 9 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑍 ∈ ℤ) |
| 242 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈ ℤ) |
| 243 | 241, 242 | zmulcld 12728 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍 · 𝐾) ∈ ℤ) |
| 244 | 243 | znegcld 12724 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → -(𝑍 · 𝐾) ∈ ℤ) |
| 245 | 232, 125 | sseqtrd 4020 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) ⊆ (Base‘(𝑅 ↾s 𝑈))) |
| 246 | 245 | sseld 3982 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 247 | 246 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 248 | 240, 244,
247 | 3jca 1129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (1 ∈ ℤ ∧ -(𝑍 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 249 | 156, 118,
157 | mulgdir 19124 |
. . . . . . . . . 10
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (1 ∈
ℤ ∧ -(𝑍 ·
𝐾) ∈ ℤ ∧
𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦) = ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
| 250 | 239, 248,
249 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦) = ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
| 251 | 156, 118 | mulg1 19099 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) →
(1(.g‘(𝑅
↾s 𝑈))𝑦) = 𝑦) |
| 252 | 247, 251 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (1(.g‘(𝑅 ↾s 𝑈))𝑦) = 𝑦) |
| 253 | 156, 118,
162 | mulgneg 19110 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈))) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
| 254 | 239, 243,
247, 253 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦))) |
| 255 | 241, 242,
247 | 3jca 1129 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 256 | 156, 118 | mulgass 19129 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑍 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦))) |
| 257 | 239, 255,
256 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦))) |
| 258 | 117, 41, 118 | isprimroot 42094 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 259 | 258 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 260 | 259 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑦 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
| 261 | 260 | simp2d 1144 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
| 262 | 261 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)))) |
| 263 | 71 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
| 264 | 263 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) ↔ (𝑦 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))))) |
| 265 | 262, 264 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑦 ∈ (𝑅 PrimRoots 𝐾) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈)))) |
| 266 | 265 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
| 267 | 266 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦)) = (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
| 268 | 239, 241,
172 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
| 269 | 267, 268 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑍(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑦)) = (0g‘(𝑅 ↾s 𝑈))) |
| 270 | 257, 269 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
| 271 | 270 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈)))) |
| 272 | 239, 177 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
| 273 | 271, 272 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((invg‘(𝑅 ↾s 𝑈))‘((𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = (0g‘(𝑅 ↾s 𝑈))) |
| 274 | 254, 273 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦) = (0g‘(𝑅 ↾s 𝑈))) |
| 275 | 252, 274 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = (𝑦(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
| 276 | 156, 157,
171, 239, 247 | grpridd 18988 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝑦(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = 𝑦) |
| 277 | 275, 276 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1(.g‘(𝑅 ↾s 𝑈))𝑦)(+g‘(𝑅 ↾s 𝑈))(-(𝑍 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑦)) = 𝑦) |
| 278 | 250, 277 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((1 + -(𝑍 · 𝐾))(.g‘(𝑅 ↾s 𝑈))𝑦) = 𝑦) |
| 279 | 238, 278 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘(𝑅 ↾s 𝑈))𝑦) = 𝑦) |
| 280 | 236, 279 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐼 · 𝐽)(.g‘𝑅)𝑦) = 𝑦) |
| 281 | 226, 280 | eqtr3d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐼(.g‘𝑅)(𝐽(.g‘𝑅)𝑦)) = 𝑦) |
| 282 | 223, 281 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘(𝐽(.g‘𝑅)𝑦)) = 𝑦) |
| 283 | 211, 282 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅 PrimRoots 𝐾)) → (𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦)) = 𝑦) |
| 284 | 283 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝑅 PrimRoots 𝐾)(𝐹‘((𝑛 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐽(.g‘𝑅)𝑛))‘𝑦)) = 𝑦) |
| 285 | 18, 32, 197, 284 | 2fvidf1od 7318 |
1
⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |