![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpn0 | Structured version Visualization version GIF version |
Description: A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
grpn0 | ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | grpbn0 18892 | . 2 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ≠ ∅) |
3 | fveq2 6882 | . . . 4 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
4 | base0 17154 | . . . 4 ⊢ ∅ = (Base‘∅) | |
5 | 3, 4 | eqtr4di 2782 | . . 3 ⊢ (𝐺 = ∅ → (Base‘𝐺) = ∅) |
6 | 5 | necon3i 2965 | . 2 ⊢ ((Base‘𝐺) ≠ ∅ → 𝐺 ≠ ∅) |
7 | 2, 6 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∅c0 4315 ‘cfv 6534 Basecbs 17149 Grpcgrp 18859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-1cn 11165 ax-addcl 11167 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12212 df-slot 17120 df-ndx 17132 df-base 17150 df-0g 17392 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 |
This theorem is referenced by: lactghmga 19321 |
Copyright terms: Public domain | W3C validator |