| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpn0 | Structured version Visualization version GIF version | ||
| Description: A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpn0 | ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | grpbn0 18936 | . 2 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ≠ ∅) |
| 3 | fveq2 6873 | . . . 4 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
| 4 | base0 17220 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 5 | 3, 4 | eqtr4di 2787 | . . 3 ⊢ (𝐺 = ∅ → (Base‘𝐺) = ∅) |
| 6 | 5 | necon3i 2963 | . 2 ⊢ ((Base‘𝐺) ≠ ∅ → 𝐺 ≠ ∅) |
| 7 | 2, 6 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4306 ‘cfv 6528 Basecbs 17215 Grpcgrp 18903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-1cn 11180 ax-addcl 11182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-nn 12234 df-slot 17188 df-ndx 17200 df-base 17216 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 |
| This theorem is referenced by: lactghmga 19373 |
| Copyright terms: Public domain | W3C validator |