![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpn0 | Structured version Visualization version GIF version |
Description: A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
grpn0 | ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2800 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | grpbn0 17766 | . 2 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ≠ ∅) |
3 | fveq2 6412 | . . . 4 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
4 | base0 16236 | . . . 4 ⊢ ∅ = (Base‘∅) | |
5 | 3, 4 | syl6eqr 2852 | . . 3 ⊢ (𝐺 = ∅ → (Base‘𝐺) = ∅) |
6 | 5 | necon3i 3004 | . 2 ⊢ ((Base‘𝐺) ≠ ∅ → 𝐺 ≠ ∅) |
7 | 2, 6 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∅c0 4116 ‘cfv 6102 Basecbs 16183 Grpcgrp 17737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-riota 6840 df-ov 6882 df-slot 16187 df-base 16189 df-0g 16416 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-grp 17740 |
This theorem is referenced by: lactghmga 18135 |
Copyright terms: Public domain | W3C validator |