MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpn0 Structured version   Visualization version   GIF version

Theorem grpn0 18990
Description: A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
grpn0 (𝐺 ∈ Grp → 𝐺 ≠ ∅)

Proof of Theorem grpn0
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐺) = (Base‘𝐺)
21grpbn0 18985 . 2 (𝐺 ∈ Grp → (Base‘𝐺) ≠ ∅)
3 fveq2 6905 . . . 4 (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅))
4 base0 17253 . . . 4 ∅ = (Base‘∅)
53, 4eqtr4di 2794 . . 3 (𝐺 = ∅ → (Base‘𝐺) = ∅)
65necon3i 2972 . 2 ((Base‘𝐺) ≠ ∅ → 𝐺 ≠ ∅)
72, 6syl 17 1 (𝐺 ∈ Grp → 𝐺 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2939  c0 4332  cfv 6560  Basecbs 17248  Grpcgrp 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-1cn 11214  ax-addcl 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-nn 12268  df-slot 17220  df-ndx 17232  df-base 17249  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955
This theorem is referenced by:  lactghmga  19424
  Copyright terms: Public domain W3C validator