MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplidd Structured version   Visualization version   GIF version

Theorem grplidd 18879
Description: The identity element of a group is a left identity. Deduction associated with grplid 18877. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpbn0.b 𝐵 = (Base‘𝐺)
grplid.p + = (+g𝐺)
grplid.o 0 = (0g𝐺)
grplidd.g (𝜑𝐺 ∈ Grp)
grplidd.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grplidd (𝜑 → ( 0 + 𝑋) = 𝑋)

Proof of Theorem grplidd
StepHypRef Expression
1 grplidd.g . 2 (𝜑𝐺 ∈ Grp)
2 grplidd.1 . 2 (𝜑𝑋𝐵)
3 grpbn0.b . . 3 𝐵 = (Base‘𝐺)
4 grplid.p . . 3 + = (+g𝐺)
5 grplid.o . . 3 0 = (0g𝐺)
63, 4, 5grplid 18877 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
71, 2, 6syl2anc 584 1 (𝜑 → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Grpcgrp 18843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846
This theorem is referenced by:  eqger  19088  conjnmz  19162  rngqiprngimfolem  21225  rngqiprngfulem5  21250  ofldchr  21511  mhpaddcl  22064  r1pid2  26092  conjga  33134  erler  33227  rlocaddval  33230  rlocmulval  33231  rloccring  33232  rloc0g  33233  qsnzr  33415  qsdrngilem  33454  ressply1evls1  33523  r1pid2OLD  33564  dimkerim  33635  rtelextdg2lem  33734  primrootspoweq0  42138  aks6d1c6lem5  42209  grpcominv1  42540
  Copyright terms: Public domain W3C validator