![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplidd | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. Deduction associated with grplid 19007. (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
grplidd | ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
6 | 3, 4, 5 | grplid 19007 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
7 | 1, 2, 6 | syl2anc 583 | 1 ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: eqger 19218 conjnmz 19292 rngqiprngimfolem 21323 rngqiprngfulem5 21348 mhpaddcl 22178 r1pid2 26221 erler 33237 rlocaddval 33240 rlocmulval 33241 rloccring 33242 rloc0g 33243 ofldchr 33309 qsnzr 33448 qsdrngilem 33487 r1pid2OLD 33594 dimkerim 33640 rtelextdg2lem 33717 primrootspoweq0 42063 aks6d1c6lem5 42134 grpcominv1 42463 |
Copyright terms: Public domain | W3C validator |