| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplidd | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. Deduction associated with grplid 18905. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grplidd | ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | grplid 18905 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 0gc0g 17408 Grpcgrp 18871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-riota 7346 df-ov 7392 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 |
| This theorem is referenced by: eqger 19116 conjnmz 19190 rngqiprngimfolem 21206 rngqiprngfulem5 21231 mhpaddcl 22044 r1pid2 26073 conjga 33133 erler 33222 rlocaddval 33225 rlocmulval 33226 rloccring 33227 rloc0g 33228 ofldchr 33298 qsnzr 33432 qsdrngilem 33471 ressply1evls1 33540 r1pid2OLD 33580 dimkerim 33629 rtelextdg2lem 33722 primrootspoweq0 42089 aks6d1c6lem5 42160 grpcominv1 42489 |
| Copyright terms: Public domain | W3C validator |