| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplidd | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. Deduction associated with grplid 18864. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grplidd | ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | grplid 18864 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: eqger 19075 conjnmz 19149 rngqiprngimfolem 21215 rngqiprngfulem5 21240 ofldchr 21501 mhpaddcl 22054 r1pid2 26083 conjga 33125 erler 33215 rlocaddval 33218 rlocmulval 33219 rloccring 33220 rloc0g 33221 qsnzr 33402 qsdrngilem 33441 ressply1evls1 33510 r1pid2OLD 33550 dimkerim 33599 rtelextdg2lem 33692 primrootspoweq0 42079 aks6d1c6lem5 42150 grpcominv1 42481 |
| Copyright terms: Public domain | W3C validator |