MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplidd Structured version   Visualization version   GIF version

Theorem grplidd 18956
Description: The identity element of a group is a left identity. Deduction associated with grplid 18954. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpbn0.b 𝐵 = (Base‘𝐺)
grplid.p + = (+g𝐺)
grplid.o 0 = (0g𝐺)
grplidd.g (𝜑𝐺 ∈ Grp)
grplidd.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grplidd (𝜑 → ( 0 + 𝑋) = 𝑋)

Proof of Theorem grplidd
StepHypRef Expression
1 grplidd.g . 2 (𝜑𝐺 ∈ Grp)
2 grplidd.1 . 2 (𝜑𝑋𝐵)
3 grpbn0.b . . 3 𝐵 = (Base‘𝐺)
4 grplid.p . . 3 + = (+g𝐺)
5 grplid.o . . 3 0 = (0g𝐺)
63, 4, 5grplid 18954 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
71, 2, 6syl2anc 584 1 (𝜑 → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  0gc0g 17455  Grpcgrp 18920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-riota 7370  df-ov 7416  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923
This theorem is referenced by:  eqger  19165  conjnmz  19239  rngqiprngimfolem  21262  rngqiprngfulem5  21287  mhpaddcl  22103  r1pid2  26137  erler  33208  rlocaddval  33211  rlocmulval  33212  rloccring  33213  rloc0g  33214  ofldchr  33284  qsnzr  33418  qsdrngilem  33457  r1pid2OLD  33564  dimkerim  33613  rtelextdg2lem  33706  primrootspoweq0  42066  aks6d1c6lem5  42137  grpcominv1  42481
  Copyright terms: Public domain W3C validator