MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplidd Structured version   Visualization version   GIF version

Theorem grplidd 18897
Description: The identity element of a group is a left identity. Deduction associated with grplid 18895. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpbn0.b 𝐵 = (Base‘𝐺)
grplid.p + = (+g𝐺)
grplid.o 0 = (0g𝐺)
grplidd.g (𝜑𝐺 ∈ Grp)
grplidd.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grplidd (𝜑 → ( 0 + 𝑋) = 𝑋)

Proof of Theorem grplidd
StepHypRef Expression
1 grplidd.g . 2 (𝜑𝐺 ∈ Grp)
2 grplidd.1 . 2 (𝜑𝑋𝐵)
3 grpbn0.b . . 3 𝐵 = (Base‘𝐺)
4 grplid.p . . 3 + = (+g𝐺)
5 grplid.o . . 3 0 = (0g𝐺)
63, 4, 5grplid 18895 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
71, 2, 6syl2anc 583 1 (𝜑 → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  0gc0g 17392  Grpcgrp 18861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-riota 7368  df-ov 7415  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864
This theorem is referenced by:  eqger  19101  rngqiprngimfolem  21139  rngqiprngfulem5  21164  ofldchr  32870  qsnzr  33016  qsdrngilem  33050  r1pid2  33122  dimkerim  33168  grpcominv1  41552
  Copyright terms: Public domain W3C validator