MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplidd Structured version   Visualization version   GIF version

Theorem grplidd 18884
Description: The identity element of a group is a left identity. Deduction associated with grplid 18882. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpbn0.b 𝐵 = (Base‘𝐺)
grplid.p + = (+g𝐺)
grplid.o 0 = (0g𝐺)
grplidd.g (𝜑𝐺 ∈ Grp)
grplidd.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grplidd (𝜑 → ( 0 + 𝑋) = 𝑋)

Proof of Theorem grplidd
StepHypRef Expression
1 grplidd.g . 2 (𝜑𝐺 ∈ Grp)
2 grplidd.1 . 2 (𝜑𝑋𝐵)
3 grpbn0.b . . 3 𝐵 = (Base‘𝐺)
4 grplid.p . . 3 + = (+g𝐺)
5 grplid.o . . 3 0 = (0g𝐺)
63, 4, 5grplid 18882 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
71, 2, 6syl2anc 584 1 (𝜑 → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Grpcgrp 18848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851
This theorem is referenced by:  eqger  19092  conjnmz  19166  rngqiprngimfolem  21229  rngqiprngfulem5  21254  ofldchr  21515  mhpaddcl  22067  r1pid2  26095  conjga  33146  erler  33239  rlocaddval  33242  rlocmulval  33243  rloccring  33244  rloc0g  33245  qsnzr  33427  qsdrngilem  33466  ressply1evls1  33535  r1pid2OLD  33576  esplyind  33613  dimkerim  33661  rtelextdg2lem  33760  primrootspoweq0  42219  aks6d1c6lem5  42290  grpcominv1  42626
  Copyright terms: Public domain W3C validator