| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplidd | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. Deduction associated with grplid 18954. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grplidd | ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | 3, 4, 5 | grplid 18954 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 0gc0g 17455 Grpcgrp 18920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-riota 7370 df-ov 7416 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 |
| This theorem is referenced by: eqger 19165 conjnmz 19239 rngqiprngimfolem 21262 rngqiprngfulem5 21287 mhpaddcl 22103 r1pid2 26137 erler 33208 rlocaddval 33211 rlocmulval 33212 rloccring 33213 rloc0g 33214 ofldchr 33284 qsnzr 33418 qsdrngilem 33457 r1pid2OLD 33564 dimkerim 33613 rtelextdg2lem 33706 primrootspoweq0 42066 aks6d1c6lem5 42137 grpcominv1 42481 |
| Copyright terms: Public domain | W3C validator |