![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplidd | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. Deduction associated with grplid 18924. (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
grplidd | ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
6 | 3, 4, 5 | grplid 18924 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
7 | 1, 2, 6 | syl2anc 583 | 1 ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 0gc0g 17421 Grpcgrp 18890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-riota 7376 df-ov 7423 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 |
This theorem is referenced by: eqger 19133 conjnmz 19206 rngqiprngimfolem 21180 rngqiprngfulem5 21205 erler 32992 rlocaddval 32995 rlocmulval 32996 rloccring 32997 rloc0g 32998 ofldchr 33042 qsnzr 33184 qsdrngilem 33218 r1pid2 33279 dimkerim 33325 primrootspoweq0 41577 aks6d1c6lem5 41649 grpcominv1 41748 |
Copyright terms: Public domain | W3C validator |