| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvovco | Structured version Visualization version GIF version | ||
| Description: Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| fvovco.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) |
| fvovco.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| fvovco | ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvovco.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) | |
| 2 | fvovco.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 3 | 1, 2 | ffvelcdmd 7060 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (𝑉 × 𝑊)) |
| 4 | 1st2nd2 8010 | . . . 4 ⊢ ((𝐹‘𝑌) ∈ (𝑉 × 𝑊) → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) |
| 6 | 5 | fveq2d 6865 | . 2 ⊢ (𝜑 → (𝑂‘(𝐹‘𝑌)) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
| 7 | fvco3 6963 | . . 3 ⊢ ((𝐹:𝑋⟶(𝑉 × 𝑊) ∧ 𝑌 ∈ 𝑋) → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) | |
| 8 | 1, 2, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) |
| 9 | df-ov 7393 | . . 3 ⊢ ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
| 11 | 6, 8, 10 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: cnmetcoval 45203 volicoff 46000 voliooicof 46001 hoissre 46549 hoiprodcl 46552 hoicvr 46553 hoicvrrex 46561 ovn0lem 46570 ovnhoilem1 46606 ovnhoilem2 46607 hoicoto2 46610 ovnlecvr2 46615 ovncvr2 46616 ovolval2lem 46648 ovolval5lem3 46659 |
| Copyright terms: Public domain | W3C validator |