| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvovco | Structured version Visualization version GIF version | ||
| Description: Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| fvovco.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) |
| fvovco.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| fvovco | ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvovco.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) | |
| 2 | fvovco.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 3 | 1, 2 | ffvelcdmd 7019 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (𝑉 × 𝑊)) |
| 4 | 1st2nd2 7963 | . . . 4 ⊢ ((𝐹‘𝑌) ∈ (𝑉 × 𝑊) → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝑂‘(𝐹‘𝑌)) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
| 7 | fvco3 6922 | . . 3 ⊢ ((𝐹:𝑋⟶(𝑉 × 𝑊) ∧ 𝑌 ∈ 𝑋) → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) | |
| 8 | 1, 2, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) |
| 9 | df-ov 7352 | . . 3 ⊢ ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
| 11 | 6, 8, 10 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 × cxp 5617 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-1st 7924 df-2nd 7925 |
| This theorem is referenced by: cnmetcoval 45200 volicoff 45996 voliooicof 45997 hoissre 46545 hoiprodcl 46548 hoicvr 46549 hoicvrrex 46557 ovn0lem 46566 ovnhoilem1 46602 ovnhoilem2 46603 hoicoto2 46606 ovnlecvr2 46611 ovncvr2 46612 ovolval2lem 46644 ovolval5lem3 46655 |
| Copyright terms: Public domain | W3C validator |