Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvovco Structured version   Visualization version   GIF version

Theorem fvovco 45180
Description: Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
fvovco.1 (𝜑𝐹:𝑋⟶(𝑉 × 𝑊))
fvovco.2 (𝜑𝑌𝑋)
Assertion
Ref Expression
fvovco (𝜑 → ((𝑂𝐹)‘𝑌) = ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))))

Proof of Theorem fvovco
StepHypRef Expression
1 fvovco.1 . . . . 5 (𝜑𝐹:𝑋⟶(𝑉 × 𝑊))
2 fvovco.2 . . . . 5 (𝜑𝑌𝑋)
31, 2ffvelcdmd 7039 . . . 4 (𝜑 → (𝐹𝑌) ∈ (𝑉 × 𝑊))
4 1st2nd2 7986 . . . 4 ((𝐹𝑌) ∈ (𝑉 × 𝑊) → (𝐹𝑌) = ⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩)
53, 4syl 17 . . 3 (𝜑 → (𝐹𝑌) = ⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩)
65fveq2d 6844 . 2 (𝜑 → (𝑂‘(𝐹𝑌)) = (𝑂‘⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩))
7 fvco3 6942 . . 3 ((𝐹:𝑋⟶(𝑉 × 𝑊) ∧ 𝑌𝑋) → ((𝑂𝐹)‘𝑌) = (𝑂‘(𝐹𝑌)))
81, 2, 7syl2anc 584 . 2 (𝜑 → ((𝑂𝐹)‘𝑌) = (𝑂‘(𝐹𝑌)))
9 df-ov 7372 . . 3 ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))) = (𝑂‘⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩)
109a1i 11 . 2 (𝜑 → ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))) = (𝑂‘⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩))
116, 8, 103eqtr4d 2774 1 (𝜑 → ((𝑂𝐹)‘𝑌) = ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4591   × cxp 5629  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-1st 7947  df-2nd 7948
This theorem is referenced by:  cnmetcoval  45189  volicoff  45986  voliooicof  45987  hoissre  46535  hoiprodcl  46538  hoicvr  46539  hoicvrrex  46547  ovn0lem  46556  ovnhoilem1  46592  ovnhoilem2  46593  hoicoto2  46596  ovnlecvr2  46601  ovncvr2  46602  ovolval2lem  46634  ovolval5lem3  46645
  Copyright terms: Public domain W3C validator