| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvovco | Structured version Visualization version GIF version | ||
| Description: Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| fvovco.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) |
| fvovco.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| fvovco | ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvovco.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) | |
| 2 | fvovco.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 3 | 1, 2 | ffvelcdmd 7085 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (𝑉 × 𝑊)) |
| 4 | 1st2nd2 8035 | . . . 4 ⊢ ((𝐹‘𝑌) ∈ (𝑉 × 𝑊) → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) |
| 6 | 5 | fveq2d 6890 | . 2 ⊢ (𝜑 → (𝑂‘(𝐹‘𝑌)) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
| 7 | fvco3 6988 | . . 3 ⊢ ((𝐹:𝑋⟶(𝑉 × 𝑊) ∧ 𝑌 ∈ 𝑋) → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) | |
| 8 | 1, 2, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) |
| 9 | df-ov 7416 | . . 3 ⊢ ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
| 11 | 6, 8, 10 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 × cxp 5663 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-1st 7996 df-2nd 7997 |
| This theorem is referenced by: cnmetcoval 45164 volicoff 45967 voliooicof 45968 hoissre 46516 hoiprodcl 46519 hoicvr 46520 hoicvrrex 46528 ovn0lem 46537 ovnhoilem1 46573 ovnhoilem2 46574 hoicoto2 46577 ovnlecvr2 46582 ovncvr2 46583 ovolval2lem 46615 ovolval5lem3 46626 |
| Copyright terms: Public domain | W3C validator |