![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvovco | Structured version Visualization version GIF version |
Description: Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
fvovco.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) |
fvovco.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
fvovco | ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvovco.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) | |
2 | fvovco.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
3 | 1, 2 | ffvelcdmd 7087 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (𝑉 × 𝑊)) |
4 | 1st2nd2 8016 | . . . 4 ⊢ ((𝐹‘𝑌) ∈ (𝑉 × 𝑊) → (𝐹‘𝑌) = ⟨(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))⟩) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) = ⟨(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))⟩) |
6 | 5 | fveq2d 6895 | . 2 ⊢ (𝜑 → (𝑂‘(𝐹‘𝑌)) = (𝑂‘⟨(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))⟩)) |
7 | fvco3 6990 | . . 3 ⊢ ((𝐹:𝑋⟶(𝑉 × 𝑊) ∧ 𝑌 ∈ 𝑋) → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) | |
8 | 1, 2, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) |
9 | df-ov 7414 | . . 3 ⊢ ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘⟨(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))⟩) | |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘⟨(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))⟩)) |
11 | 6, 8, 10 | 3eqtr4d 2782 | 1 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 × cxp 5674 ∘ ccom 5680 ⟶wf 6539 ‘cfv 6543 (class class class)co 7411 1st c1st 7975 2nd c2nd 7976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: cnmetcoval 44200 volicoff 45010 voliooicof 45011 hoissre 45559 hoiprodcl 45562 hoicvr 45563 hoicvrrex 45571 ovn0lem 45580 ovnhoilem1 45616 ovnhoilem2 45617 hoicoto2 45620 ovnlecvr2 45625 ovncvr2 45626 ovolval2lem 45658 ovolval5lem3 45669 |
Copyright terms: Public domain | W3C validator |