![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvovco | Structured version Visualization version GIF version |
Description: Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
fvovco.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) |
fvovco.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
fvovco | ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvovco.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) | |
2 | fvovco.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
3 | 1, 2 | ffvelrnd 6586 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (𝑉 × 𝑊)) |
4 | 1st2nd2 7440 | . . . 4 ⊢ ((𝐹‘𝑌) ∈ (𝑉 × 𝑊) → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) = 〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) |
6 | 5 | fveq2d 6415 | . 2 ⊢ (𝜑 → (𝑂‘(𝐹‘𝑌)) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
7 | fvco3 6500 | . . 3 ⊢ ((𝐹:𝑋⟶(𝑉 × 𝑊) ∧ 𝑌 ∈ 𝑋) → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) | |
8 | 1, 2, 7 | syl2anc 580 | . 2 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = (𝑂‘(𝐹‘𝑌))) |
9 | df-ov 6881 | . . 3 ⊢ ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉) | |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌))) = (𝑂‘〈(1st ‘(𝐹‘𝑌)), (2nd ‘(𝐹‘𝑌))〉)) |
11 | 6, 8, 10 | 3eqtr4d 2843 | 1 ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 〈cop 4374 × cxp 5310 ∘ ccom 5316 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 1st c1st 7399 2nd c2nd 7400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-1st 7401 df-2nd 7402 |
This theorem is referenced by: cnmetcoval 40146 volicoff 40955 voliooicof 40956 hoissre 41504 hoiprodcl 41507 hoicvr 41508 hoicvrrex 41516 ovn0lem 41525 ovnhoilem1 41561 ovnhoilem2 41562 hoicoto2 41565 ovnlecvr2 41570 ovncvr2 41571 ovolval2lem 41603 ovolval5lem3 41614 |
Copyright terms: Public domain | W3C validator |