Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvovco Structured version   Visualization version   GIF version

Theorem fvovco 44596
Description: Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
fvovco.1 (𝜑𝐹:𝑋⟶(𝑉 × 𝑊))
fvovco.2 (𝜑𝑌𝑋)
Assertion
Ref Expression
fvovco (𝜑 → ((𝑂𝐹)‘𝑌) = ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))))

Proof of Theorem fvovco
StepHypRef Expression
1 fvovco.1 . . . . 5 (𝜑𝐹:𝑋⟶(𝑉 × 𝑊))
2 fvovco.2 . . . . 5 (𝜑𝑌𝑋)
31, 2ffvelcdmd 7100 . . . 4 (𝜑 → (𝐹𝑌) ∈ (𝑉 × 𝑊))
4 1st2nd2 8038 . . . 4 ((𝐹𝑌) ∈ (𝑉 × 𝑊) → (𝐹𝑌) = ⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩)
53, 4syl 17 . . 3 (𝜑 → (𝐹𝑌) = ⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩)
65fveq2d 6906 . 2 (𝜑 → (𝑂‘(𝐹𝑌)) = (𝑂‘⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩))
7 fvco3 7002 . . 3 ((𝐹:𝑋⟶(𝑉 × 𝑊) ∧ 𝑌𝑋) → ((𝑂𝐹)‘𝑌) = (𝑂‘(𝐹𝑌)))
81, 2, 7syl2anc 582 . 2 (𝜑 → ((𝑂𝐹)‘𝑌) = (𝑂‘(𝐹𝑌)))
9 df-ov 7429 . . 3 ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))) = (𝑂‘⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩)
109a1i 11 . 2 (𝜑 → ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))) = (𝑂‘⟨(1st ‘(𝐹𝑌)), (2nd ‘(𝐹𝑌))⟩))
116, 8, 103eqtr4d 2778 1 (𝜑 → ((𝑂𝐹)‘𝑌) = ((1st ‘(𝐹𝑌))𝑂(2nd ‘(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cop 4638   × cxp 5680  ccom 5686  wf 6549  cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-1st 7999  df-2nd 8000
This theorem is referenced by:  cnmetcoval  44605  volicoff  45412  voliooicof  45413  hoissre  45961  hoiprodcl  45964  hoicvr  45965  hoicvrrex  45973  ovn0lem  45982  ovnhoilem1  46018  ovnhoilem2  46019  hoicoto2  46022  ovnlecvr2  46027  ovncvr2  46028  ovolval2lem  46060  ovolval5lem3  46071
  Copyright terms: Public domain W3C validator