HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chsupval Structured version   Visualization version   GIF version

Theorem chsupval 28766
Description: The value of the supremum of a set of closed subspaces of Hilbert space. For an alternate version of the value, see chsupval2 28841. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
chsupval (𝐴C → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))

Proof of Theorem chsupval
StepHypRef Expression
1 chsspwh 28676 . . 3 C ⊆ 𝒫 ℋ
2 sstr2 3827 . . 3 (𝐴C → ( C ⊆ 𝒫 ℋ → 𝐴 ⊆ 𝒫 ℋ))
31, 2mpi 20 . 2 (𝐴C𝐴 ⊆ 𝒫 ℋ)
4 hsupval 28765 . 2 (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
53, 4syl 17 1 (𝐴C → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wss 3791  𝒫 cpw 4378   cuni 4671  cfv 6135  chba 28348   C cch 28358  cort 28359   chsup 28363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-1cn 10330  ax-addcl 10332  ax-hilex 28428  ax-hfvadd 28429  ax-hv0cl 28432  ax-hfvmul 28434
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-map 8142  df-nn 11375  df-hlim 28401  df-sh 28636  df-ch 28650  df-chsup 28742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator