![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hsupunss | Structured version Visualization version GIF version |
Description: The union of a set of Hilbert space subsets is smaller than its supremum. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsupunss | ⊢ (𝐴 ⊆ 𝒫 ℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5096 | . . 3 ⊢ (𝐴 ⊆ 𝒫 ℋ ↔ ∪ 𝐴 ⊆ ℋ) | |
2 | ococss 31050 | . . 3 ⊢ (∪ 𝐴 ⊆ ℋ → ∪ 𝐴 ⊆ (⊥‘(⊥‘∪ 𝐴))) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ⊆ 𝒫 ℋ → ∪ 𝐴 ⊆ (⊥‘(⊥‘∪ 𝐴))) |
4 | hsupval 31091 | . 2 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | |
5 | 3, 4 | sseqtrrd 4018 | 1 ⊢ (𝐴 ⊆ 𝒫 ℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3943 𝒫 cpw 4597 ∪ cuni 4902 ‘cfv 6536 ℋchba 30676 ⊥cort 30687 ∨ℋ chsup 30691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-hilex 30756 ax-hfvadd 30757 ax-hv0cl 30760 ax-hfvmul 30762 ax-hvmul0 30767 ax-hfi 30836 ax-his1 30839 ax-his2 30840 ax-his3 30841 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-2 12276 df-cj 15049 df-re 15050 df-im 15051 df-sh 30964 df-oc 31009 df-chsup 31068 |
This theorem is referenced by: chsupunss 31101 |
Copyright terms: Public domain | W3C validator |