![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hsupss | Structured version Visualization version GIF version |
Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsupss | ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4916 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
2 | sspwuni 5103 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 ℋ ↔ ∪ 𝐴 ⊆ ℋ) | |
3 | sspwuni 5103 | . . . 4 ⊢ (𝐵 ⊆ 𝒫 ℋ ↔ ∪ 𝐵 ⊆ ℋ) | |
4 | occon2 30809 | . . . 4 ⊢ ((∪ 𝐴 ⊆ ℋ ∧ ∪ 𝐵 ⊆ ℋ) → (∪ 𝐴 ⊆ ∪ 𝐵 → (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) | |
5 | 2, 3, 4 | syl2anb 597 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (∪ 𝐴 ⊆ ∪ 𝐵 → (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) |
6 | 1, 5 | syl5 34 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) |
7 | hsupval 30855 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
9 | hsupval 30855 | . . . 4 ⊢ (𝐵 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐵) = (⊥‘(⊥‘∪ 𝐵))) | |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( ∨ℋ ‘𝐵) = (⊥‘(⊥‘∪ 𝐵))) |
11 | 8, 10 | sseq12d 4015 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵) ↔ (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) |
12 | 6, 11 | sylibrd 259 | 1 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 ‘cfv 6543 ℋchba 30440 ⊥cort 30451 ∨ℋ chsup 30455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-hilex 30520 ax-hfvadd 30521 ax-hv0cl 30524 ax-hfvmul 30526 ax-hvmul0 30531 ax-hfi 30600 ax-his2 30604 ax-his3 30605 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-sh 30728 df-oc 30773 df-chsup 30832 |
This theorem is referenced by: chsupss 30863 |
Copyright terms: Public domain | W3C validator |