HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsupss Structured version   Visualization version   GIF version

Theorem hsupss 30862
Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hsupss ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))

Proof of Theorem hsupss
StepHypRef Expression
1 uniss 4916 . . 3 (𝐴𝐵 𝐴 𝐵)
2 sspwuni 5103 . . . 4 (𝐴 ⊆ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
3 sspwuni 5103 . . . 4 (𝐵 ⊆ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 occon2 30809 . . . 4 (( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( 𝐴 𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
52, 3, 4syl2anb 597 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐴 𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
61, 5syl5 34 . 2 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
7 hsupval 30855 . . . 4 (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
87adantr 480 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
9 hsupval 30855 . . . 4 (𝐵 ⊆ 𝒫 ℋ → ( 𝐵) = (⊥‘(⊥‘ 𝐵)))
109adantl 481 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐵) = (⊥‘(⊥‘ 𝐵)))
118, 10sseq12d 4015 . 2 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (( 𝐴) ⊆ ( 𝐵) ↔ (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
126, 11sylibrd 259 1 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3948  𝒫 cpw 4602   cuni 4908  cfv 6543  chba 30440  cort 30451   chsup 30455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-hilex 30520  ax-hfvadd 30521  ax-hv0cl 30524  ax-hfvmul 30526  ax-hvmul0 30531  ax-hfi 30600  ax-his2 30604  ax-his3 30605
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-sh 30728  df-oc 30773  df-chsup 30832
This theorem is referenced by:  chsupss  30863
  Copyright terms: Public domain W3C validator