HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsupss Structured version   Visualization version   GIF version

Theorem hsupss 31277
Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hsupss ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))

Proof of Theorem hsupss
StepHypRef Expression
1 uniss 4882 . . 3 (𝐴𝐵 𝐴 𝐵)
2 sspwuni 5067 . . . 4 (𝐴 ⊆ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
3 sspwuni 5067 . . . 4 (𝐵 ⊆ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 occon2 31224 . . . 4 (( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( 𝐴 𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
52, 3, 4syl2anb 598 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐴 𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
61, 5syl5 34 . 2 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
7 hsupval 31270 . . . 4 (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
87adantr 480 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
9 hsupval 31270 . . . 4 (𝐵 ⊆ 𝒫 ℋ → ( 𝐵) = (⊥‘(⊥‘ 𝐵)))
109adantl 481 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐵) = (⊥‘(⊥‘ 𝐵)))
118, 10sseq12d 3983 . 2 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (( 𝐴) ⊆ ( 𝐵) ↔ (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
126, 11sylibrd 259 1 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  chba 30855  cort 30866   chsup 30870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-hilex 30935  ax-hfvadd 30936  ax-hv0cl 30939  ax-hfvmul 30941  ax-hvmul0 30946  ax-hfi 31015  ax-his2 31019  ax-his3 31020
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sh 31143  df-oc 31188  df-chsup 31247
This theorem is referenced by:  chsupss  31278
  Copyright terms: Public domain W3C validator