Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hsupss | Structured version Visualization version GIF version |
Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsupss | ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4853 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
2 | sspwuni 5034 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 ℋ ↔ ∪ 𝐴 ⊆ ℋ) | |
3 | sspwuni 5034 | . . . 4 ⊢ (𝐵 ⊆ 𝒫 ℋ ↔ ∪ 𝐵 ⊆ ℋ) | |
4 | occon2 29646 | . . . 4 ⊢ ((∪ 𝐴 ⊆ ℋ ∧ ∪ 𝐵 ⊆ ℋ) → (∪ 𝐴 ⊆ ∪ 𝐵 → (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) | |
5 | 2, 3, 4 | syl2anb 598 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (∪ 𝐴 ⊆ ∪ 𝐵 → (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) |
6 | 1, 5 | syl5 34 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) |
7 | hsupval 29692 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
9 | hsupval 29692 | . . . 4 ⊢ (𝐵 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐵) = (⊥‘(⊥‘∪ 𝐵))) | |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( ∨ℋ ‘𝐵) = (⊥‘(⊥‘∪ 𝐵))) |
11 | 8, 10 | sseq12d 3959 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵) ↔ (⊥‘(⊥‘∪ 𝐴)) ⊆ (⊥‘(⊥‘∪ 𝐵)))) |
12 | 6, 11 | sylibrd 258 | 1 ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4845 ‘cfv 6432 ℋchba 29277 ⊥cort 29288 ∨ℋ chsup 29292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-hilex 29357 ax-hfvadd 29358 ax-hv0cl 29361 ax-hfvmul 29363 ax-hvmul0 29368 ax-hfi 29437 ax-his2 29441 ax-his3 29442 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-sh 29565 df-oc 29610 df-chsup 29669 |
This theorem is referenced by: chsupss 29700 |
Copyright terms: Public domain | W3C validator |