HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsupss Structured version   Visualization version   GIF version

Theorem hsupss 29699
Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hsupss ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))

Proof of Theorem hsupss
StepHypRef Expression
1 uniss 4853 . . 3 (𝐴𝐵 𝐴 𝐵)
2 sspwuni 5034 . . . 4 (𝐴 ⊆ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
3 sspwuni 5034 . . . 4 (𝐵 ⊆ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 occon2 29646 . . . 4 (( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( 𝐴 𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
52, 3, 4syl2anb 598 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐴 𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
61, 5syl5 34 . 2 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
7 hsupval 29692 . . . 4 (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
87adantr 481 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
9 hsupval 29692 . . . 4 (𝐵 ⊆ 𝒫 ℋ → ( 𝐵) = (⊥‘(⊥‘ 𝐵)))
109adantl 482 . . 3 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → ( 𝐵) = (⊥‘(⊥‘ 𝐵)))
118, 10sseq12d 3959 . 2 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (( 𝐴) ⊆ ( 𝐵) ↔ (⊥‘(⊥‘ 𝐴)) ⊆ (⊥‘(⊥‘ 𝐵))))
126, 11sylibrd 258 1 ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wss 3892  𝒫 cpw 4539   cuni 4845  cfv 6432  chba 29277  cort 29288   chsup 29292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-hilex 29357  ax-hfvadd 29358  ax-hv0cl 29361  ax-hfvmul 29363  ax-hvmul0 29368  ax-hfi 29437  ax-his2 29441  ax-his3 29442
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-ltxr 11015  df-sh 29565  df-oc 29610  df-chsup 29669
This theorem is referenced by:  chsupss  29700
  Copyright terms: Public domain W3C validator