![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddcl | Structured version Visualization version GIF version |
Description: Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvadd 31028 | . 2 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 7560 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 (class class class)co 7430 ℋchba 30947 +ℎ cva 30948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-hfvadd 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 |
This theorem is referenced by: hvsubf 31043 hvsubcl 31045 hvaddcli 31046 hvadd4 31064 hvsub4 31065 hvpncan 31067 hvaddsubass 31069 hvsubass 31072 hv2times 31089 hvaddsub4 31106 his7 31118 normpyc 31174 hhph 31206 hlimadd 31221 helch 31271 ocsh 31311 spanunsni 31607 3oalem1 31690 pjcompi 31700 mayete3i 31756 hoscl 31773 hoaddcl 31786 unoplin 31948 hmoplin 31970 braadd 31973 0lnfn 32013 lnopmi 32028 lnophsi 32029 lnopcoi 32031 lnopeq0i 32035 nlelshi 32088 cnlnadjlem2 32096 cnlnadjlem6 32100 adjlnop 32114 superpos 32382 cdj3lem2b 32465 cdj3i 32469 |
Copyright terms: Public domain | W3C validator |