| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvadd 30936 | . 2 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7520 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℋchba 30855 +ℎ cva 30856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hfvadd 30936 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: hvsubf 30951 hvsubcl 30953 hvaddcli 30954 hvadd4 30972 hvsub4 30973 hvpncan 30975 hvaddsubass 30977 hvsubass 30980 hv2times 30997 hvaddsub4 31014 his7 31026 normpyc 31082 hhph 31114 hlimadd 31129 helch 31179 ocsh 31219 spanunsni 31515 3oalem1 31598 pjcompi 31608 mayete3i 31664 hoscl 31681 hoaddcl 31694 unoplin 31856 hmoplin 31878 braadd 31881 0lnfn 31921 lnopmi 31936 lnophsi 31937 lnopcoi 31939 lnopeq0i 31943 nlelshi 31996 cnlnadjlem2 32004 cnlnadjlem6 32008 adjlnop 32022 superpos 32290 cdj3lem2b 32373 cdj3i 32377 |
| Copyright terms: Public domain | W3C validator |