| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvadd 30929 | . 2 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7517 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℋchba 30848 +ℎ cva 30849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hfvadd 30929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: hvsubf 30944 hvsubcl 30946 hvaddcli 30947 hvadd4 30965 hvsub4 30966 hvpncan 30968 hvaddsubass 30970 hvsubass 30973 hv2times 30990 hvaddsub4 31007 his7 31019 normpyc 31075 hhph 31107 hlimadd 31122 helch 31172 ocsh 31212 spanunsni 31508 3oalem1 31591 pjcompi 31601 mayete3i 31657 hoscl 31674 hoaddcl 31687 unoplin 31849 hmoplin 31871 braadd 31874 0lnfn 31914 lnopmi 31929 lnophsi 31930 lnopcoi 31932 lnopeq0i 31936 nlelshi 31989 cnlnadjlem2 31997 cnlnadjlem6 32001 adjlnop 32015 superpos 32283 cdj3lem2b 32366 cdj3i 32370 |
| Copyright terms: Public domain | W3C validator |