| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvadd 30902 | . 2 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7497 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7369 ℋchba 30821 +ℎ cva 30822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hfvadd 30902 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: hvsubf 30917 hvsubcl 30919 hvaddcli 30920 hvadd4 30938 hvsub4 30939 hvpncan 30941 hvaddsubass 30943 hvsubass 30946 hv2times 30963 hvaddsub4 30980 his7 30992 normpyc 31048 hhph 31080 hlimadd 31095 helch 31145 ocsh 31185 spanunsni 31481 3oalem1 31564 pjcompi 31574 mayete3i 31630 hoscl 31647 hoaddcl 31660 unoplin 31822 hmoplin 31844 braadd 31847 0lnfn 31887 lnopmi 31902 lnophsi 31903 lnopcoi 31905 lnopeq0i 31909 nlelshi 31962 cnlnadjlem2 31970 cnlnadjlem6 31974 adjlnop 31988 superpos 32256 cdj3lem2b 32339 cdj3i 32343 |
| Copyright terms: Public domain | W3C validator |