| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvadd 31019 | . 2 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7561 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7431 ℋchba 30938 +ℎ cva 30939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-hfvadd 31019 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: hvsubf 31034 hvsubcl 31036 hvaddcli 31037 hvadd4 31055 hvsub4 31056 hvpncan 31058 hvaddsubass 31060 hvsubass 31063 hv2times 31080 hvaddsub4 31097 his7 31109 normpyc 31165 hhph 31197 hlimadd 31212 helch 31262 ocsh 31302 spanunsni 31598 3oalem1 31681 pjcompi 31691 mayete3i 31747 hoscl 31764 hoaddcl 31777 unoplin 31939 hmoplin 31961 braadd 31964 0lnfn 32004 lnopmi 32019 lnophsi 32020 lnopcoi 32022 lnopeq0i 32026 nlelshi 32079 cnlnadjlem2 32087 cnlnadjlem6 32091 adjlnop 32105 superpos 32373 cdj3lem2b 32456 cdj3i 32460 |
| Copyright terms: Public domain | W3C validator |