| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvadd 30981 | . 2 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7535 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7405 ℋchba 30900 +ℎ cva 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-hfvadd 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: hvsubf 30996 hvsubcl 30998 hvaddcli 30999 hvadd4 31017 hvsub4 31018 hvpncan 31020 hvaddsubass 31022 hvsubass 31025 hv2times 31042 hvaddsub4 31059 his7 31071 normpyc 31127 hhph 31159 hlimadd 31174 helch 31224 ocsh 31264 spanunsni 31560 3oalem1 31643 pjcompi 31653 mayete3i 31709 hoscl 31726 hoaddcl 31739 unoplin 31901 hmoplin 31923 braadd 31926 0lnfn 31966 lnopmi 31981 lnophsi 31982 lnopcoi 31984 lnopeq0i 31988 nlelshi 32041 cnlnadjlem2 32049 cnlnadjlem6 32053 adjlnop 32067 superpos 32335 cdj3lem2b 32418 cdj3i 32422 |
| Copyright terms: Public domain | W3C validator |