Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idllmulcl Structured version   Visualization version   GIF version

Theorem idllmulcl 36178
Description: An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idllmulcl.1 𝐺 = (1st𝑅)
idllmulcl.2 𝐻 = (2nd𝑅)
idllmulcl.3 𝑋 = ran 𝐺
Assertion
Ref Expression
idllmulcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼)

Proof of Theorem idllmulcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idllmulcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 idllmulcl.2 . . . . . 6 𝐻 = (2nd𝑅)
3 idllmulcl.3 . . . . . 6 𝑋 = ran 𝐺
4 eqid 2738 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 36172 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
65biimpa 477 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
76simp3d 1143 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
8 simpl 483 . . . . . 6 (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑧𝐻𝑥) ∈ 𝐼)
98ralimi 3087 . . . . 5 (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
109adantl 482 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
1110ralimi 3087 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
127, 11syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
13 oveq2 7283 . . . 4 (𝑥 = 𝐴 → (𝑧𝐻𝑥) = (𝑧𝐻𝐴))
1413eleq1d 2823 . . 3 (𝑥 = 𝐴 → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ (𝑧𝐻𝐴) ∈ 𝐼))
15 oveq1 7282 . . . 4 (𝑧 = 𝐵 → (𝑧𝐻𝐴) = (𝐵𝐻𝐴))
1615eleq1d 2823 . . 3 (𝑧 = 𝐵 → ((𝑧𝐻𝐴) ∈ 𝐼 ↔ (𝐵𝐻𝐴) ∈ 𝐼))
1714, 16rspc2v 3570 . 2 ((𝐴𝐼𝐵𝑋) → (∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼 → (𝐵𝐻𝐴) ∈ 𝐼))
1812, 17mpan9 507 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  GIdcgi 28852  RingOpscrngo 36052  Idlcidl 36165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-idl 36168
This theorem is referenced by:  idlnegcl  36180  divrngidl  36186  intidl  36187  unichnidl  36189  prnc  36225  ispridlc  36228
  Copyright terms: Public domain W3C validator