Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idllmulcl Structured version   Visualization version   GIF version

Theorem idllmulcl 37522
Description: An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idllmulcl.1 𝐺 = (1st𝑅)
idllmulcl.2 𝐻 = (2nd𝑅)
idllmulcl.3 𝑋 = ran 𝐺
Assertion
Ref Expression
idllmulcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼)

Proof of Theorem idllmulcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idllmulcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 idllmulcl.2 . . . . . 6 𝐻 = (2nd𝑅)
3 idllmulcl.3 . . . . . 6 𝑋 = ran 𝐺
4 eqid 2725 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 37516 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
65biimpa 475 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
76simp3d 1141 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
8 simpl 481 . . . . . 6 (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑧𝐻𝑥) ∈ 𝐼)
98ralimi 3073 . . . . 5 (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
109adantl 480 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
1110ralimi 3073 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
127, 11syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
13 oveq2 7422 . . . 4 (𝑥 = 𝐴 → (𝑧𝐻𝑥) = (𝑧𝐻𝐴))
1413eleq1d 2810 . . 3 (𝑥 = 𝐴 → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ (𝑧𝐻𝐴) ∈ 𝐼))
15 oveq1 7421 . . . 4 (𝑧 = 𝐵 → (𝑧𝐻𝐴) = (𝐵𝐻𝐴))
1615eleq1d 2810 . . 3 (𝑧 = 𝐵 → ((𝑧𝐻𝐴) ∈ 𝐼 ↔ (𝐵𝐻𝐴) ∈ 𝐼))
1714, 16rspc2v 3612 . 2 ((𝐴𝐼𝐵𝑋) → (∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼 → (𝐵𝐻𝐴) ∈ 𝐼))
1812, 17mpan9 505 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3051  wss 3939  ran crn 5671  cfv 6541  (class class class)co 7414  1st c1st 7987  2nd c2nd 7988  GIdcgi 30316  RingOpscrngo 37396  Idlcidl 37509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-iota 6493  df-fun 6543  df-fv 6549  df-ov 7417  df-idl 37512
This theorem is referenced by:  idlnegcl  37524  divrngidl  37530  intidl  37531  unichnidl  37533  prnc  37569  ispridlc  37572
  Copyright terms: Public domain W3C validator