Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idllmulcl Structured version   Visualization version   GIF version

Theorem idllmulcl 38007
Description: An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idllmulcl.1 𝐺 = (1st𝑅)
idllmulcl.2 𝐻 = (2nd𝑅)
idllmulcl.3 𝑋 = ran 𝐺
Assertion
Ref Expression
idllmulcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼)

Proof of Theorem idllmulcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idllmulcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 idllmulcl.2 . . . . . 6 𝐻 = (2nd𝑅)
3 idllmulcl.3 . . . . . 6 𝑋 = ran 𝐺
4 eqid 2735 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 38001 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
65biimpa 476 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
76simp3d 1143 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
8 simpl 482 . . . . . 6 (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑧𝐻𝑥) ∈ 𝐼)
98ralimi 3081 . . . . 5 (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
109adantl 481 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
1110ralimi 3081 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
127, 11syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)
13 oveq2 7439 . . . 4 (𝑥 = 𝐴 → (𝑧𝐻𝑥) = (𝑧𝐻𝐴))
1413eleq1d 2824 . . 3 (𝑥 = 𝐴 → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ (𝑧𝐻𝐴) ∈ 𝐼))
15 oveq1 7438 . . . 4 (𝑧 = 𝐵 → (𝑧𝐻𝐴) = (𝐵𝐻𝐴))
1615eleq1d 2824 . . 3 (𝑧 = 𝐵 → ((𝑧𝐻𝐴) ∈ 𝐼 ↔ (𝐵𝐻𝐴) ∈ 𝐼))
1714, 16rspc2v 3633 . 2 ((𝐴𝐼𝐵𝑋) → (∀𝑥𝐼𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼 → (𝐵𝐻𝐴) ∈ 𝐼))
1812, 17mpan9 506 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  ran crn 5690  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  GIdcgi 30519  RingOpscrngo 37881  Idlcidl 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-idl 37997
This theorem is referenced by:  idlnegcl  38009  divrngidl  38015  intidl  38016  unichnidl  38018  prnc  38054  ispridlc  38057
  Copyright terms: Public domain W3C validator