![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idllmulcl | Structured version Visualization version GIF version |
Description: An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idllmulcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idllmulcl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
idllmulcl.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
idllmulcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idllmulcl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | idllmulcl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | idllmulcl.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2732 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 2, 3, 4 | isidl 36870 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
6 | 5 | biimpa 477 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) |
7 | 6 | simp3d 1144 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) |
8 | simpl 483 | . . . . . 6 ⊢ (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑧𝐻𝑥) ∈ 𝐼) | |
9 | 8 | ralimi 3083 | . . . . 5 ⊢ (∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼) |
11 | 10 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼) |
12 | 7, 11 | syl 17 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼) |
13 | oveq2 7413 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑧𝐻𝑥) = (𝑧𝐻𝐴)) | |
14 | 13 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ (𝑧𝐻𝐴) ∈ 𝐼)) |
15 | oveq1 7412 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧𝐻𝐴) = (𝐵𝐻𝐴)) | |
16 | 15 | eleq1d 2818 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑧𝐻𝐴) ∈ 𝐼 ↔ (𝐵𝐻𝐴) ∈ 𝐼)) |
17 | 14, 16 | rspc2v 3621 | . 2 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼 → (𝐵𝐻𝐴) ∈ 𝐼)) |
18 | 12, 17 | mpan9 507 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 ran crn 5676 ‘cfv 6540 (class class class)co 7405 1st c1st 7969 2nd c2nd 7970 GIdcgi 29730 RingOpscrngo 36750 Idlcidl 36863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-idl 36866 |
This theorem is referenced by: idlnegcl 36878 divrngidl 36884 intidl 36885 unichnidl 36887 prnc 36923 ispridlc 36926 |
Copyright terms: Public domain | W3C validator |