Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsubcl Structured version   Visualization version   GIF version

Theorem idlsubcl 35867
Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
idlsubcl.1 𝐺 = (1st𝑅)
idlsubcl.2 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
idlsubcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼)

Proof of Theorem idlsubcl
StepHypRef Expression
1 idlsubcl.1 . . . . 5 𝐺 = (1st𝑅)
2 eqid 2736 . . . . 5 ran 𝐺 = ran 𝐺
31, 2idlcl 35861 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → 𝐴 ∈ ran 𝐺)
41, 2idlcl 35861 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵𝐼) → 𝐵 ∈ ran 𝐺)
53, 4anim12dan 622 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺))
6 eqid 2736 . . . . . 6 (inv‘𝐺) = (inv‘𝐺)
7 idlsubcl.2 . . . . . 6 𝐷 = ( /𝑔𝐺)
81, 2, 6, 7rngosub 35774 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
983expb 1122 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
109adantlr 715 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
115, 10syldan 594 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
12 simprl 771 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → 𝐴𝐼)
131, 6idlnegcl 35866 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵𝐼) → ((inv‘𝐺)‘𝐵) ∈ 𝐼)
1413adantrl 716 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → ((inv‘𝐺)‘𝐵) ∈ 𝐼)
1512, 14jca 515 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼))
161idladdcl 35863 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼)
1715, 16syldan 594 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼)
1811, 17eqeltrd 2831 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  ran crn 5537  cfv 6358  (class class class)co 7191  1st c1st 7737  invcgn 28526   /𝑔 cgs 28527  RingOpscrngo 35738  Idlcidl 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-grpo 28528  df-gid 28529  df-ginv 28530  df-gdiv 28531  df-ablo 28580  df-ass 35687  df-exid 35689  df-mgmOLD 35693  df-sgrOLD 35705  df-mndo 35711  df-rngo 35739  df-idl 35854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator