| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsubcl | Structured version Visualization version GIF version | ||
| Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| idlsubcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| idlsubcl.2 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| idlsubcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlsubcl.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | 1, 2 | idlcl 38011 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ran 𝐺) |
| 4 | 1, 2 | idlcl 38011 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵 ∈ 𝐼) → 𝐵 ∈ ran 𝐺) |
| 5 | 3, 4 | anim12dan 619 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 7 | idlsubcl.2 | . . . . . 6 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 8 | 1, 2, 6, 7 | rngosub 37924 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
| 9 | 8 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
| 10 | 9 | adantlr 715 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
| 11 | 5, 10 | syldan 591 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
| 12 | simprl 770 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → 𝐴 ∈ 𝐼) | |
| 13 | 1, 6 | idlnegcl 38016 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵 ∈ 𝐼) → ((inv‘𝐺)‘𝐵) ∈ 𝐼) |
| 14 | 13 | adantrl 716 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → ((inv‘𝐺)‘𝐵) ∈ 𝐼) |
| 15 | 12, 14 | jca 511 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴 ∈ 𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) |
| 16 | 1 | idladdcl 38013 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼) |
| 17 | 15, 16 | syldan 591 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼) |
| 18 | 11, 17 | eqeltrd 2828 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ran crn 5639 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 invcgn 30420 /𝑔 cgs 30421 RingOpscrngo 37888 Idlcidl 38001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-ass 37837 df-exid 37839 df-mgmOLD 37843 df-sgrOLD 37855 df-mndo 37861 df-rngo 37889 df-idl 38004 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |