Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsubcl Structured version   Visualization version   GIF version

Theorem idlsubcl 36181
Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
idlsubcl.1 𝐺 = (1st𝑅)
idlsubcl.2 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
idlsubcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼)

Proof of Theorem idlsubcl
StepHypRef Expression
1 idlsubcl.1 . . . . 5 𝐺 = (1st𝑅)
2 eqid 2738 . . . . 5 ran 𝐺 = ran 𝐺
31, 2idlcl 36175 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → 𝐴 ∈ ran 𝐺)
41, 2idlcl 36175 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵𝐼) → 𝐵 ∈ ran 𝐺)
53, 4anim12dan 619 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺))
6 eqid 2738 . . . . . 6 (inv‘𝐺) = (inv‘𝐺)
7 idlsubcl.2 . . . . . 6 𝐷 = ( /𝑔𝐺)
81, 2, 6, 7rngosub 36088 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
983expb 1119 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
109adantlr 712 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ ran 𝐺𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
115, 10syldan 591 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
12 simprl 768 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → 𝐴𝐼)
131, 6idlnegcl 36180 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵𝐼) → ((inv‘𝐺)‘𝐵) ∈ 𝐼)
1413adantrl 713 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → ((inv‘𝐺)‘𝐵) ∈ 𝐼)
1512, 14jca 512 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼))
161idladdcl 36177 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼)
1715, 16syldan 591 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼)
1811, 17eqeltrd 2839 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  invcgn 28853   /𝑔 cgs 28854  RingOpscrngo 36052  Idlcidl 36165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-ass 36001  df-exid 36003  df-mgmOLD 36007  df-sgrOLD 36019  df-mndo 36025  df-rngo 36053  df-idl 36168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator