![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsubcl | Structured version Visualization version GIF version |
Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
idlsubcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idlsubcl.2 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
idlsubcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsubcl.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2735 | . . . . 5 ⊢ ran 𝐺 = ran 𝐺 | |
3 | 1, 2 | idlcl 38004 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ran 𝐺) |
4 | 1, 2 | idlcl 38004 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵 ∈ 𝐼) → 𝐵 ∈ ran 𝐺) |
5 | 3, 4 | anim12dan 619 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) |
6 | eqid 2735 | . . . . . 6 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
7 | idlsubcl.2 | . . . . . 6 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
8 | 1, 2, 6, 7 | rngosub 37917 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
9 | 8 | 3expb 1119 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
10 | 9 | adantlr 715 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
11 | 5, 10 | syldan 591 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
12 | simprl 771 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → 𝐴 ∈ 𝐼) | |
13 | 1, 6 | idlnegcl 38009 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵 ∈ 𝐼) → ((inv‘𝐺)‘𝐵) ∈ 𝐼) |
14 | 13 | adantrl 716 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → ((inv‘𝐺)‘𝐵) ∈ 𝐼) |
15 | 12, 14 | jca 511 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴 ∈ 𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) |
16 | 1 | idladdcl 38006 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼) |
17 | 15, 16 | syldan 591 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼) |
18 | 11, 17 | eqeltrd 2839 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ran crn 5690 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 invcgn 30520 /𝑔 cgs 30521 RingOpscrngo 37881 Idlcidl 37994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-ass 37830 df-exid 37832 df-mgmOLD 37836 df-sgrOLD 37848 df-mndo 37854 df-rngo 37882 df-idl 37997 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |