Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsubcl | Structured version Visualization version GIF version |
Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
idlsubcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idlsubcl.2 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
idlsubcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsubcl.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2738 | . . . . 5 ⊢ ran 𝐺 = ran 𝐺 | |
3 | 1, 2 | idlcl 36102 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ran 𝐺) |
4 | 1, 2 | idlcl 36102 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵 ∈ 𝐼) → 𝐵 ∈ ran 𝐺) |
5 | 3, 4 | anim12dan 618 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) |
6 | eqid 2738 | . . . . . 6 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
7 | idlsubcl.2 | . . . . . 6 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
8 | 1, 2, 6, 7 | rngosub 36015 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
9 | 8 | 3expb 1118 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
10 | 9 | adantlr 711 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
11 | 5, 10 | syldan 590 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
12 | simprl 767 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → 𝐴 ∈ 𝐼) | |
13 | 1, 6 | idlnegcl 36107 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐵 ∈ 𝐼) → ((inv‘𝐺)‘𝐵) ∈ 𝐼) |
14 | 13 | adantrl 712 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → ((inv‘𝐺)‘𝐵) ∈ 𝐼) |
15 | 12, 14 | jca 511 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴 ∈ 𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) |
16 | 1 | idladdcl 36104 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼) |
17 | 15, 16 | syldan 590 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺((inv‘𝐺)‘𝐵)) ∈ 𝐼) |
18 | 11, 17 | eqeltrd 2839 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 invcgn 28754 /𝑔 cgs 28755 RingOpscrngo 35979 Idlcidl 36092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-ass 35928 df-exid 35930 df-mgmOLD 35934 df-sgrOLD 35946 df-mndo 35952 df-rngo 35980 df-idl 36095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |