Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsubcl Structured version   Visualization version   GIF version

Theorem idlsubcl 36886
Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
idlsubcl.1 𝐺 = (1st β€˜π‘…)
idlsubcl.2 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
idlsubcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ (𝐴𝐷𝐡) ∈ 𝐼)

Proof of Theorem idlsubcl
StepHypRef Expression
1 idlsubcl.1 . . . . 5 𝐺 = (1st β€˜π‘…)
2 eqid 2732 . . . . 5 ran 𝐺 = ran 𝐺
31, 2idlcl 36880 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ 𝐴 ∈ ran 𝐺)
41, 2idlcl 36880 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐡 ∈ 𝐼) β†’ 𝐡 ∈ ran 𝐺)
53, 4anim12dan 619 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ (𝐴 ∈ ran 𝐺 ∧ 𝐡 ∈ ran 𝐺))
6 eqid 2732 . . . . . 6 (invβ€˜πΊ) = (invβ€˜πΊ)
7 idlsubcl.2 . . . . . 6 𝐷 = ( /𝑔 β€˜πΊ)
81, 2, 6, 7rngosub 36793 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺 ∧ 𝐡 ∈ ran 𝐺) β†’ (𝐴𝐷𝐡) = (𝐴𝐺((invβ€˜πΊ)β€˜π΅)))
983expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐡 ∈ ran 𝐺)) β†’ (𝐴𝐷𝐡) = (𝐴𝐺((invβ€˜πΊ)β€˜π΅)))
109adantlr 713 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ ran 𝐺 ∧ 𝐡 ∈ ran 𝐺)) β†’ (𝐴𝐷𝐡) = (𝐴𝐺((invβ€˜πΊ)β€˜π΅)))
115, 10syldan 591 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ (𝐴𝐷𝐡) = (𝐴𝐺((invβ€˜πΊ)β€˜π΅)))
12 simprl 769 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ 𝐴 ∈ 𝐼)
131, 6idlnegcl 36885 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐡 ∈ 𝐼) β†’ ((invβ€˜πΊ)β€˜π΅) ∈ 𝐼)
1413adantrl 714 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ ((invβ€˜πΊ)β€˜π΅) ∈ 𝐼)
1512, 14jca 512 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ (𝐴 ∈ 𝐼 ∧ ((invβ€˜πΊ)β€˜π΅) ∈ 𝐼))
161idladdcl 36882 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ ((invβ€˜πΊ)β€˜π΅) ∈ 𝐼)) β†’ (𝐴𝐺((invβ€˜πΊ)β€˜π΅)) ∈ 𝐼)
1715, 16syldan 591 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ (𝐴𝐺((invβ€˜πΊ)β€˜π΅)) ∈ 𝐼)
1811, 17eqeltrd 2833 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐡 ∈ 𝐼)) β†’ (𝐴𝐷𝐡) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  invcgn 29739   /𝑔 cgs 29740  RingOpscrngo 36757  Idlcidl 36870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-grpo 29741  df-gid 29742  df-ginv 29743  df-gdiv 29744  df-ablo 29793  df-ass 36706  df-exid 36708  df-mgmOLD 36712  df-sgrOLD 36724  df-mndo 36730  df-rngo 36758  df-idl 36873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator