MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmaxeq Structured version   Visualization version   GIF version

Theorem xrmaxeq 13006
Description: The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
xrmaxeq ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)

Proof of Theorem xrmaxeq
StepHypRef Expression
1 xrletri3 12981 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵𝐴𝐴𝐵)))
21ancoms 459 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵𝐴𝐴𝐵)))
32biimpar 478 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵𝐴𝐴𝐵)) → 𝐵 = 𝐴)
43anassrs 468 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵𝐴) ∧ 𝐴𝐵) → 𝐵 = 𝐴)
54ifeq1da 4503 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = if(𝐴𝐵, 𝐴, 𝐴))
653impa 1109 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = if(𝐴𝐵, 𝐴, 𝐴))
7 ifid 4512 . 2 if(𝐴𝐵, 𝐴, 𝐴) = 𝐴
86, 7eqtrdi 2792 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  ifcif 4472   class class class wbr 5089  *cxr 11101  cle 11103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-pre-lttri 11038  ax-pre-lttrn 11039
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108
This theorem is referenced by:  max0sub  13023
  Copyright terms: Public domain W3C validator