MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmaxeq Structured version   Visualization version   GIF version

Theorem xrmaxeq 13075
Description: The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
xrmaxeq ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)

Proof of Theorem xrmaxeq
StepHypRef Expression
1 xrletri3 13050 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵𝐴𝐴𝐵)))
21ancoms 458 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵𝐴𝐴𝐵)))
32biimpar 477 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵𝐴𝐴𝐵)) → 𝐵 = 𝐴)
43anassrs 467 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵𝐴) ∧ 𝐴𝐵) → 𝐵 = 𝐴)
54ifeq1da 4507 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = if(𝐴𝐵, 𝐴, 𝐴))
653impa 1109 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = if(𝐴𝐵, 𝐴, 𝐴))
7 ifid 4516 . 2 if(𝐴𝐵, 𝐴, 𝐴) = 𝐴
86, 7eqtrdi 2782 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  ifcif 4475   class class class wbr 5091  *cxr 11142  cle 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149
This theorem is referenced by:  max0sub  13092
  Copyright terms: Public domain W3C validator