MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  max0add Structured version   Visualization version   GIF version

Theorem max0add 15260
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.)
Assertion
Ref Expression
max0add (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))

Proof of Theorem max0add
StepHypRef Expression
1 0red 11218 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 recn 11199 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
54addridd 11415 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 0) = 𝐴)
6 iftrue 4529 . . . . 5 (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
76adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
8 le0neg2 11724 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
98biimpa 476 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0)
109adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 ≤ 0)
11 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → 0 ≤ -𝐴)
12 renegcl 11524 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
1312ad2antrr 723 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 ∈ ℝ)
14 0re 11217 . . . . . . . 8 0 ∈ ℝ
15 letri3 11300 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 = 0 ↔ (-𝐴 ≤ 0 ∧ 0 ≤ -𝐴)))
1613, 14, 15sylancl 585 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → (-𝐴 = 0 ↔ (-𝐴 ≤ 0 ∧ 0 ≤ -𝐴)))
1710, 11, 16mpbir2and 710 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 = 0)
1817ifeq1da 4554 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = if(0 ≤ -𝐴, 0, 0))
19 ifid 4563 . . . . 5 if(0 ≤ -𝐴, 0, 0) = 0
2018, 19eqtrdi 2782 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
217, 20oveq12d 7422 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 + 0))
22 absid 15246 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
235, 21, 223eqtr4d 2776 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))
243adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
2524negcld 11559 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℂ)
2625addlidd 11416 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 + -𝐴) = -𝐴)
27 letri3 11300 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
2814, 27mpan2 688 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
2928biimprd 247 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐴 = 0))
3029impl 455 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐴) → 𝐴 = 0)
3130ifeq1da 4554 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = if(0 ≤ 𝐴, 0, 0))
32 ifid 4563 . . . . 5 if(0 ≤ 𝐴, 0, 0) = 0
3331, 32eqtrdi 2782 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
34 le0neg1 11723 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
3534biimpa 476 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
3635iftrued 4531 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴)
3733, 36oveq12d 7422 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (0 + -𝐴))
38 absnid 15248 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
3926, 37, 383eqtr4d 2776 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))
401, 2, 23, 39lecasei 11321 1 (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  ifcif 4523   class class class wbr 5141  cfv 6536  (class class class)co 7404  cc 11107  cr 11108  0cc0 11109   + caddc 11112  cle 11250  -cneg 11446  abscabs 15184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-rp 12978  df-seq 13970  df-exp 14030  df-cj 15049  df-re 15050  df-im 15051  df-sqrt 15185  df-abs 15186
This theorem is referenced by:  iblabslem  25707  iblabsnclem  37063
  Copyright terms: Public domain W3C validator