![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > max0add | Structured version Visualization version GIF version |
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.) |
Ref | Expression |
---|---|
max0add | ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11218 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | recn 11199 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
5 | 4 | addridd 11415 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 0) = 𝐴) |
6 | iftrue 4529 | . . . . 5 ⊢ (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) | |
7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) |
8 | le0neg2 11724 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) | |
9 | 8 | biimpa 476 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 ≤ 0) |
11 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → 0 ≤ -𝐴) | |
12 | renegcl 11524 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
13 | 12 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 ∈ ℝ) |
14 | 0re 11217 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
15 | letri3 11300 | . . . . . . . 8 ⊢ ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 = 0 ↔ (-𝐴 ≤ 0 ∧ 0 ≤ -𝐴))) | |
16 | 13, 14, 15 | sylancl 585 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → (-𝐴 = 0 ↔ (-𝐴 ≤ 0 ∧ 0 ≤ -𝐴))) |
17 | 10, 11, 16 | mpbir2and 710 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 = 0) |
18 | 17 | ifeq1da 4554 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = if(0 ≤ -𝐴, 0, 0)) |
19 | ifid 4563 | . . . . 5 ⊢ if(0 ≤ -𝐴, 0, 0) = 0 | |
20 | 18, 19 | eqtrdi 2782 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0) |
21 | 7, 20 | oveq12d 7422 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 + 0)) |
22 | absid 15246 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
23 | 5, 21, 22 | 3eqtr4d 2776 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) |
24 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ) |
25 | 24 | negcld 11559 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℂ) |
26 | 25 | addlidd 11416 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 + -𝐴) = -𝐴) |
27 | letri3 11300 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) | |
28 | 14, 27 | mpan2 688 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
29 | 28 | biimprd 247 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐴 = 0)) |
30 | 29 | impl 455 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐴) → 𝐴 = 0) |
31 | 30 | ifeq1da 4554 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = if(0 ≤ 𝐴, 0, 0)) |
32 | ifid 4563 | . . . . 5 ⊢ if(0 ≤ 𝐴, 0, 0) = 0 | |
33 | 31, 32 | eqtrdi 2782 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0) |
34 | le0neg1 11723 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | |
35 | 34 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴) |
36 | 35 | iftrued 4531 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴) |
37 | 33, 36 | oveq12d 7422 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (0 + -𝐴)) |
38 | absnid 15248 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | |
39 | 26, 37, 38 | 3eqtr4d 2776 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) |
40 | 1, 2, 23, 39 | lecasei 11321 | 1 ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ifcif 4523 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 ℂcc 11107 ℝcr 11108 0cc0 11109 + caddc 11112 ≤ cle 11250 -cneg 11446 abscabs 15184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-seq 13970 df-exp 14030 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 |
This theorem is referenced by: iblabslem 25707 iblabsnclem 37063 |
Copyright terms: Public domain | W3C validator |