MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  max0add Structured version   Visualization version   GIF version

Theorem max0add 15297
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.)
Assertion
Ref Expression
max0add (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))

Proof of Theorem max0add
StepHypRef Expression
1 0red 11255 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 recn 11236 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43adantr 479 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
54addridd 11452 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 0) = 𝐴)
6 iftrue 4538 . . . . 5 (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
76adantl 480 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
8 le0neg2 11761 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
98biimpa 475 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0)
109adantr 479 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 ≤ 0)
11 simpr 483 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → 0 ≤ -𝐴)
12 renegcl 11561 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
1312ad2antrr 724 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 ∈ ℝ)
14 0re 11254 . . . . . . . 8 0 ∈ ℝ
15 letri3 11337 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 = 0 ↔ (-𝐴 ≤ 0 ∧ 0 ≤ -𝐴)))
1613, 14, 15sylancl 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → (-𝐴 = 0 ↔ (-𝐴 ≤ 0 ∧ 0 ≤ -𝐴)))
1710, 11, 16mpbir2and 711 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 0 ≤ -𝐴) → -𝐴 = 0)
1817ifeq1da 4563 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = if(0 ≤ -𝐴, 0, 0))
19 ifid 4572 . . . . 5 if(0 ≤ -𝐴, 0, 0) = 0
2018, 19eqtrdi 2784 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
217, 20oveq12d 7444 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 + 0))
22 absid 15283 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
235, 21, 223eqtr4d 2778 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))
243adantr 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
2524negcld 11596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℂ)
2625addlidd 11453 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 + -𝐴) = -𝐴)
27 letri3 11337 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
2814, 27mpan2 689 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
2928biimprd 247 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐴 = 0))
3029impl 454 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ∧ 0 ≤ 𝐴) → 𝐴 = 0)
3130ifeq1da 4563 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = if(0 ≤ 𝐴, 0, 0))
32 ifid 4572 . . . . 5 if(0 ≤ 𝐴, 0, 0) = 0
3331, 32eqtrdi 2784 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
34 le0neg1 11760 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
3534biimpa 475 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
3635iftrued 4540 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴)
3733, 36oveq12d 7444 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (0 + -𝐴))
38 absnid 15285 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
3926, 37, 383eqtr4d 2778 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))
401, 2, 23, 39lecasei 11358 1 (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  ifcif 4532   class class class wbr 5152  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146   + caddc 11149  cle 11287  -cneg 11483  abscabs 15221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223
This theorem is referenced by:  iblabslem  25777  iblabsnclem  37189
  Copyright terms: Public domain W3C validator