![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnplimc | Structured version Visualization version GIF version |
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnplimc.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
cnplimc.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
Ref | Expression |
---|---|
cnplimc | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnplimc.j | . . . . 5 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
2 | cnplimc.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 24819 | . . . . . 6 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
4 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ℂ) | |
5 | resttopon 23185 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
7 | 1, 6 | eqeltrid 2843 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐴)) |
8 | cnpf2 23274 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ) | |
9 | 8 | 3expia 1120 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
10 | 7, 3, 9 | sylancl 586 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
11 | 10 | pm4.71rd 562 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))) |
12 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
13 | simplr 769 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ 𝐴) | |
14 | 13 | snssd 4814 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴) |
15 | ssequn2 4199 | . . . . . . . . 9 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
16 | 14, 15 | sylib 218 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴) |
17 | 16 | feq2d 6723 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ)) |
18 | 12, 17 | mpbird 257 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ) |
19 | 18 | feqmptd 6977 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥))) |
20 | 16 | oveq2d 7447 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
21 | 1, 20 | eqtr4id 2794 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
22 | 21 | oveq1d 7446 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)) |
23 | 22 | fveq1d 6909 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
24 | 19, 23 | eleq12d 2833 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
25 | eqid 2735 | . . . . 5 ⊢ (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
26 | ifid 4571 | . . . . . . 7 ⊢ if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = (𝐹‘𝑥) | |
27 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹‘𝑥) = (𝐹‘𝐵)) |
29 | 28 | ifeq1da 4562 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
30 | 26, 29 | eqtr3id 2789 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹‘𝑥) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
31 | 30 | mpteq2ia 5251 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
32 | simpll 767 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ) | |
33 | 32, 13 | sseldd 3996 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ) |
34 | 25, 2, 31, 12, 32, 33 | ellimc 25923 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
35 | 24, 34 | bitr4d 282 | . . 3 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
36 | 35 | pm5.32da 579 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
37 | 11, 36 | bitrd 279 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 ifcif 4531 {csn 4631 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ↾t crest 17467 TopOpenctopn 17468 ℂfldccnfld 21382 TopOnctopon 22932 CnP ccnp 23249 limℂ climc 25912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-rest 17469 df-topn 17470 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cnp 23252 df-xms 24346 df-ms 24347 df-limc 25916 |
This theorem is referenced by: cnlimc 25938 dvcnp2 25970 dvcnp2OLD 25971 dvmulbr 25990 dvmulbrOLD 25991 dvcobr 25998 dvcobrOLD 25999 cncfiooicclem1 45849 jumpncnp 45854 dirkercncf 46063 fourierdlem32 46095 fourierdlem33 46096 fourierdlem62 46124 fouriercnp 46182 |
Copyright terms: Public domain | W3C validator |