Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnplimc | Structured version Visualization version GIF version |
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnplimc.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
cnplimc.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
Ref | Expression |
---|---|
cnplimc | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnplimc.j | . . . . 5 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
2 | cnplimc.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 23852 | . . . . . 6 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
4 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ℂ) | |
5 | resttopon 22220 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
6 | 3, 4, 5 | sylancr 586 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
7 | 1, 6 | eqeltrid 2843 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐴)) |
8 | cnpf2 22309 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ) | |
9 | 8 | 3expia 1119 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
10 | 7, 3, 9 | sylancl 585 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
11 | 10 | pm4.71rd 562 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))) |
12 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
13 | simplr 765 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ 𝐴) | |
14 | 13 | snssd 4739 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴) |
15 | ssequn2 4113 | . . . . . . . . 9 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
16 | 14, 15 | sylib 217 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴) |
17 | 16 | feq2d 6570 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ)) |
18 | 12, 17 | mpbird 256 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ) |
19 | 18 | feqmptd 6819 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥))) |
20 | 16 | oveq2d 7271 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
21 | 1, 20 | eqtr4id 2798 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
22 | 21 | oveq1d 7270 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)) |
23 | 22 | fveq1d 6758 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
24 | 19, 23 | eleq12d 2833 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
25 | eqid 2738 | . . . . 5 ⊢ (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
26 | ifid 4496 | . . . . . . 7 ⊢ if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = (𝐹‘𝑥) | |
27 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹‘𝑥) = (𝐹‘𝐵)) |
29 | 28 | ifeq1da 4487 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
30 | 26, 29 | eqtr3id 2793 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹‘𝑥) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
31 | 30 | mpteq2ia 5173 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
32 | simpll 763 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ) | |
33 | 32, 13 | sseldd 3918 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ) |
34 | 25, 2, 31, 12, 32, 33 | ellimc 24942 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
35 | 24, 34 | bitr4d 281 | . . 3 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
36 | 35 | pm5.32da 578 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
37 | 11, 36 | bitrd 278 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 ifcif 4456 {csn 4558 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ↾t crest 17048 TopOpenctopn 17049 ℂfldccnfld 20510 TopOnctopon 21967 CnP ccnp 22284 limℂ climc 24931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cnp 22287 df-xms 23381 df-ms 23382 df-limc 24935 |
This theorem is referenced by: cnlimc 24957 dvcnp2 24989 dvmulbr 25008 dvcobr 25015 cncfiooicclem1 43324 jumpncnp 43329 dirkercncf 43538 fourierdlem32 43570 fourierdlem33 43571 fourierdlem62 43599 fouriercnp 43657 |
Copyright terms: Public domain | W3C validator |