| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnplimc | Structured version Visualization version GIF version | ||
| Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| Ref | Expression |
|---|---|
| cnplimc.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| cnplimc.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
| Ref | Expression |
|---|---|
| cnplimc | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnplimc.j | . . . . 5 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
| 2 | cnplimc.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 3 | 2 | cnfldtopon 24677 | . . . . . 6 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ℂ) | |
| 5 | resttopon 23055 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 7 | 1, 6 | eqeltrid 2833 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐴)) |
| 8 | cnpf2 23144 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ) | |
| 9 | 8 | 3expia 1121 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
| 10 | 7, 3, 9 | sylancl 586 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
| 11 | 10 | pm4.71rd 562 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))) |
| 12 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
| 13 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ 𝐴) | |
| 14 | 13 | snssd 4776 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴) |
| 15 | ssequn2 4155 | . . . . . . . . 9 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
| 16 | 14, 15 | sylib 218 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴) |
| 17 | 16 | feq2d 6675 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ)) |
| 18 | 12, 17 | mpbird 257 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ) |
| 19 | 18 | feqmptd 6932 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥))) |
| 20 | 16 | oveq2d 7406 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
| 21 | 1, 20 | eqtr4id 2784 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
| 22 | 21 | oveq1d 7405 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)) |
| 23 | 22 | fveq1d 6863 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
| 24 | 19, 23 | eleq12d 2823 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
| 25 | eqid 2730 | . . . . 5 ⊢ (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
| 26 | ifid 4532 | . . . . . . 7 ⊢ if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = (𝐹‘𝑥) | |
| 27 | fveq2 6861 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
| 28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹‘𝑥) = (𝐹‘𝐵)) |
| 29 | 28 | ifeq1da 4523 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
| 30 | 26, 29 | eqtr3id 2779 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹‘𝑥) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
| 31 | 30 | mpteq2ia 5205 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
| 32 | simpll 766 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ) | |
| 33 | 32, 13 | sseldd 3950 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ) |
| 34 | 25, 2, 31, 12, 32, 33 | ellimc 25781 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
| 35 | 24, 34 | bitr4d 282 | . . 3 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
| 36 | 35 | pm5.32da 579 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
| 37 | 11, 36 | bitrd 279 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 ifcif 4491 {csn 4592 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ↾t crest 17390 TopOpenctopn 17391 ℂfldccnfld 21271 TopOnctopon 22804 CnP ccnp 23119 limℂ climc 25770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cnp 23122 df-xms 24215 df-ms 24216 df-limc 25774 |
| This theorem is referenced by: cnlimc 25796 dvcnp2 25828 dvcnp2OLD 25829 dvmulbr 25848 dvmulbrOLD 25849 dvcobr 25856 dvcobrOLD 25857 cncfiooicclem1 45898 jumpncnp 45903 dirkercncf 46112 fourierdlem32 46144 fourierdlem33 46145 fourierdlem62 46173 fouriercnp 46231 |
| Copyright terms: Public domain | W3C validator |