MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnplimc Structured version   Visualization version   GIF version

Theorem cnplimc 24784
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnplimc.k 𝐾 = (TopOpen‘ℂfld)
cnplimc.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimc ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnplimc.j . . . . 5 𝐽 = (𝐾t 𝐴)
2 cnplimc.k . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 23680 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 simpl 486 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 22058 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 590 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2842 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 22147 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1123 . . . 4 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 589 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110pm4.71rd 566 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))))
12 simpr 488 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
13 simplr 769 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
1413snssd 4722 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴)
15 ssequn2 4097 . . . . . . . . 9 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1614, 15sylib 221 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴)
1716feq2d 6531 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
1812, 17mpbird 260 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ)
1918feqmptd 6780 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)))
2016oveq2d 7229 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t 𝐴))
211, 20eqtr4id 2797 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾t (𝐴 ∪ {𝐵})))
2221oveq1d 7228 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾))
2322fveq1d 6719 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
2419, 23eleq12d 2832 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
25 eqid 2737 . . . . 5 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
26 ifid 4479 . . . . . . 7 if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = (𝐹𝑥)
27 fveq2 6717 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2827adantl 485 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹𝑥) = (𝐹𝐵))
2928ifeq1da 4470 . . . . . . 7 (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3026, 29eqtr3id 2792 . . . . . 6 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹𝑥) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3130mpteq2ia 5146 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
32 simpll 767 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
3332, 13sseldd 3902 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3425, 2, 31, 12, 32, 33ellimc 24770 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
3524, 34bitr4d 285 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
3635pm5.32da 582 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
3711, 36bitrd 282 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  cun 3864  wss 3866  ifcif 4439  {csn 4541  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  t crest 16925  TopOpenctopn 16926  fldccnfld 20363  TopOnctopon 21807   CnP ccnp 22122   lim climc 24759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-rest 16927  df-topn 16928  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cnp 22125  df-xms 23218  df-ms 23219  df-limc 24763
This theorem is referenced by:  cnlimc  24785  dvcnp2  24817  dvmulbr  24836  dvcobr  24843  cncfiooicclem1  43109  jumpncnp  43114  dirkercncf  43323  fourierdlem32  43355  fourierdlem33  43356  fourierdlem62  43384  fouriercnp  43442
  Copyright terms: Public domain W3C validator