MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnplimc Structured version   Visualization version   GIF version

Theorem cnplimc 25821
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnplimc.k 𝐾 = (TopOpen‘ℂfld)
cnplimc.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimc ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnplimc.j . . . . 5 𝐽 = (𝐾t 𝐴)
2 cnplimc.k . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 24703 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 simpl 482 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 23081 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 587 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2832 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 23170 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1121 . . . 4 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 586 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110pm4.71rd 562 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))))
12 simpr 484 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
13 simplr 768 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
1413snssd 4769 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴)
15 ssequn2 4148 . . . . . . . . 9 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1614, 15sylib 218 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴)
1716feq2d 6654 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
1812, 17mpbird 257 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ)
1918feqmptd 6911 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)))
2016oveq2d 7385 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t 𝐴))
211, 20eqtr4id 2783 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾t (𝐴 ∪ {𝐵})))
2221oveq1d 7384 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾))
2322fveq1d 6842 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
2419, 23eleq12d 2822 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
25 eqid 2729 . . . . 5 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
26 ifid 4525 . . . . . . 7 if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = (𝐹𝑥)
27 fveq2 6840 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2827adantl 481 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹𝑥) = (𝐹𝐵))
2928ifeq1da 4516 . . . . . . 7 (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3026, 29eqtr3id 2778 . . . . . 6 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹𝑥) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3130mpteq2ia 5197 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
32 simpll 766 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
3332, 13sseldd 3944 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3425, 2, 31, 12, 32, 33ellimc 25807 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
3524, 34bitr4d 282 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
3635pm5.32da 579 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
3711, 36bitrd 279 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cun 3909  wss 3911  ifcif 4484  {csn 4585  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  t crest 17359  TopOpenctopn 17360  fldccnfld 21296  TopOnctopon 22830   CnP ccnp 23145   lim climc 25796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cnp 23148  df-xms 24241  df-ms 24242  df-limc 25800
This theorem is referenced by:  cnlimc  25822  dvcnp2  25854  dvcnp2OLD  25855  dvmulbr  25874  dvmulbrOLD  25875  dvcobr  25882  dvcobrOLD  25883  cncfiooicclem1  45884  jumpncnp  45889  dirkercncf  46098  fourierdlem32  46130  fourierdlem33  46131  fourierdlem62  46159  fouriercnp  46217
  Copyright terms: Public domain W3C validator