![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnplimc | Structured version Visualization version GIF version |
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnplimc.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
cnplimc.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
Ref | Expression |
---|---|
cnplimc | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnplimc.j | . . . . 5 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
2 | cnplimc.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 24290 | . . . . . 6 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
4 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ℂ) | |
5 | resttopon 22656 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
7 | 1, 6 | eqeltrid 2837 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐴)) |
8 | cnpf2 22745 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ) | |
9 | 8 | 3expia 1121 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
10 | 7, 3, 9 | sylancl 586 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
11 | 10 | pm4.71rd 563 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))) |
12 | simpr 485 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
13 | simplr 767 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ 𝐴) | |
14 | 13 | snssd 4811 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴) |
15 | ssequn2 4182 | . . . . . . . . 9 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
16 | 14, 15 | sylib 217 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴) |
17 | 16 | feq2d 6700 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ)) |
18 | 12, 17 | mpbird 256 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ) |
19 | 18 | feqmptd 6957 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥))) |
20 | 16 | oveq2d 7421 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
21 | 1, 20 | eqtr4id 2791 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
22 | 21 | oveq1d 7420 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)) |
23 | 22 | fveq1d 6890 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
24 | 19, 23 | eleq12d 2827 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
25 | eqid 2732 | . . . . 5 ⊢ (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
26 | ifid 4567 | . . . . . . 7 ⊢ if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = (𝐹‘𝑥) | |
27 | fveq2 6888 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
28 | 27 | adantl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹‘𝑥) = (𝐹‘𝐵)) |
29 | 28 | ifeq1da 4558 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
30 | 26, 29 | eqtr3id 2786 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹‘𝑥) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
31 | 30 | mpteq2ia 5250 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
32 | simpll 765 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ) | |
33 | 32, 13 | sseldd 3982 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ) |
34 | 25, 2, 31, 12, 32, 33 | ellimc 25381 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
35 | 24, 34 | bitr4d 281 | . . 3 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
36 | 35 | pm5.32da 579 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
37 | 11, 36 | bitrd 278 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ⊆ wss 3947 ifcif 4527 {csn 4627 ↦ cmpt 5230 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 ↾t crest 17362 TopOpenctopn 17363 ℂfldccnfld 20936 TopOnctopon 22403 CnP ccnp 22720 limℂ climc 25370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-starv 17208 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-rest 17364 df-topn 17365 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cnp 22723 df-xms 23817 df-ms 23818 df-limc 25374 |
This theorem is referenced by: cnlimc 25396 dvcnp2 25428 dvmulbr 25447 dvcobr 25454 gg-dvcnp2 35162 gg-dvmulbr 35163 gg-dvcobr 35164 cncfiooicclem1 44595 jumpncnp 44600 dirkercncf 44809 fourierdlem32 44841 fourierdlem33 44842 fourierdlem62 44870 fouriercnp 44928 |
Copyright terms: Public domain | W3C validator |