MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnplimc Structured version   Visualization version   GIF version

Theorem cnplimc 25815
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnplimc.k 𝐾 = (TopOpen‘ℂfld)
cnplimc.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimc ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnplimc.j . . . . 5 𝐽 = (𝐾t 𝐴)
2 cnplimc.k . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 24697 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 simpl 482 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 23076 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 587 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2835 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 23165 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1121 . . . 4 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 586 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110pm4.71rd 562 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))))
12 simpr 484 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
13 simplr 768 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
1413snssd 4758 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴)
15 ssequn2 4136 . . . . . . . . 9 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1614, 15sylib 218 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴)
1716feq2d 6635 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
1812, 17mpbird 257 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ)
1918feqmptd 6890 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)))
2016oveq2d 7362 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t 𝐴))
211, 20eqtr4id 2785 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾t (𝐴 ∪ {𝐵})))
2221oveq1d 7361 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾))
2322fveq1d 6824 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
2419, 23eleq12d 2825 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
25 eqid 2731 . . . . 5 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
26 ifid 4513 . . . . . . 7 if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = (𝐹𝑥)
27 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2827adantl 481 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹𝑥) = (𝐹𝐵))
2928ifeq1da 4504 . . . . . . 7 (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3026, 29eqtr3id 2780 . . . . . 6 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹𝑥) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3130mpteq2ia 5184 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
32 simpll 766 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
3332, 13sseldd 3930 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3425, 2, 31, 12, 32, 33ellimc 25801 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
3524, 34bitr4d 282 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
3635pm5.32da 579 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
3711, 36bitrd 279 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cun 3895  wss 3897  ifcif 4472  {csn 4573  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  t crest 17324  TopOpenctopn 17325  fldccnfld 21291  TopOnctopon 22825   CnP ccnp 23140   lim climc 25790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cnp 23143  df-xms 24235  df-ms 24236  df-limc 25794
This theorem is referenced by:  cnlimc  25816  dvcnp2  25848  dvcnp2OLD  25849  dvmulbr  25868  dvmulbrOLD  25869  dvcobr  25876  dvcobrOLD  25877  cncfiooicclem1  46001  jumpncnp  46006  dirkercncf  46215  fourierdlem32  46247  fourierdlem33  46248  fourierdlem62  46276  fouriercnp  46334
  Copyright terms: Public domain W3C validator