Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnplimc | Structured version Visualization version GIF version |
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnplimc.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
cnplimc.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
Ref | Expression |
---|---|
cnplimc | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnplimc.j | . . . . 5 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
2 | cnplimc.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 23946 | . . . . . 6 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
4 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ℂ) | |
5 | resttopon 22312 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐾 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
7 | 1, 6 | eqeltrid 2843 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐴)) |
8 | cnpf2 22401 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ) | |
9 | 8 | 3expia 1120 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
10 | 7, 3, 9 | sylancl 586 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ)) |
11 | 10 | pm4.71rd 563 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))) |
12 | simpr 485 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
13 | simplr 766 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ 𝐴) | |
14 | 13 | snssd 4742 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴) |
15 | ssequn2 4117 | . . . . . . . . 9 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
16 | 14, 15 | sylib 217 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴) |
17 | 16 | feq2d 6586 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ)) |
18 | 12, 17 | mpbird 256 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ) |
19 | 18 | feqmptd 6837 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥))) |
20 | 16 | oveq2d 7291 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
21 | 1, 20 | eqtr4id 2797 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
22 | 21 | oveq1d 7290 | . . . . . 6 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)) |
23 | 22 | fveq1d 6776 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
24 | 19, 23 | eleq12d 2833 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
25 | eqid 2738 | . . . . 5 ⊢ (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
26 | ifid 4499 | . . . . . . 7 ⊢ if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = (𝐹‘𝑥) | |
27 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
28 | 27 | adantl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹‘𝑥) = (𝐹‘𝐵)) |
29 | 28 | ifeq1da 4490 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹‘𝑥), (𝐹‘𝑥)) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
30 | 26, 29 | eqtr3id 2792 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹‘𝑥) = if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
31 | 30 | mpteq2ia 5177 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹‘𝐵), (𝐹‘𝑥))) |
32 | simpll 764 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ) | |
33 | 32, 13 | sseldd 3922 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ) |
34 | 25, 2, 31, 12, 32, 33 | ellimc 25037 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹‘𝑥)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
35 | 24, 34 | bitr4d 281 | . . 3 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
36 | 35 | pm5.32da 579 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
37 | 11, 36 | bitrd 278 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 ifcif 4459 {csn 4561 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ↾t crest 17131 TopOpenctopn 17132 ℂfldccnfld 20597 TopOnctopon 22059 CnP ccnp 22376 limℂ climc 25026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-topn 17134 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cnp 22379 df-xms 23473 df-ms 23474 df-limc 25030 |
This theorem is referenced by: cnlimc 25052 dvcnp2 25084 dvmulbr 25103 dvcobr 25110 cncfiooicclem1 43434 jumpncnp 43439 dirkercncf 43648 fourierdlem32 43680 fourierdlem33 43681 fourierdlem62 43709 fouriercnp 43767 |
Copyright terms: Public domain | W3C validator |