MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnplimc Structured version   Visualization version   GIF version

Theorem cnplimc 25051
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnplimc.k 𝐾 = (TopOpen‘ℂfld)
cnplimc.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimc ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnplimc.j . . . . 5 𝐽 = (𝐾t 𝐴)
2 cnplimc.k . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 23946 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 simpl 483 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 22312 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 587 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2843 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 22401 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1120 . . . 4 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 586 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110pm4.71rd 563 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))))
12 simpr 485 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
13 simplr 766 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
1413snssd 4742 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴)
15 ssequn2 4117 . . . . . . . . 9 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1614, 15sylib 217 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴)
1716feq2d 6586 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
1812, 17mpbird 256 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ)
1918feqmptd 6837 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)))
2016oveq2d 7291 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t 𝐴))
211, 20eqtr4id 2797 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾t (𝐴 ∪ {𝐵})))
2221oveq1d 7290 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾))
2322fveq1d 6776 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
2419, 23eleq12d 2833 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
25 eqid 2738 . . . . 5 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
26 ifid 4499 . . . . . . 7 if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = (𝐹𝑥)
27 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2827adantl 482 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹𝑥) = (𝐹𝐵))
2928ifeq1da 4490 . . . . . . 7 (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3026, 29eqtr3id 2792 . . . . . 6 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹𝑥) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3130mpteq2ia 5177 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
32 simpll 764 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
3332, 13sseldd 3922 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3425, 2, 31, 12, 32, 33ellimc 25037 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
3524, 34bitr4d 281 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
3635pm5.32da 579 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
3711, 36bitrd 278 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cun 3885  wss 3887  ifcif 4459  {csn 4561  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  t crest 17131  TopOpenctopn 17132  fldccnfld 20597  TopOnctopon 22059   CnP ccnp 22376   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  cnlimc  25052  dvcnp2  25084  dvmulbr  25103  dvcobr  25110  cncfiooicclem1  43434  jumpncnp  43439  dirkercncf  43648  fourierdlem32  43680  fourierdlem33  43681  fourierdlem62  43709  fouriercnp  43767
  Copyright terms: Public domain W3C validator