MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnplimc Structured version   Visualization version   GIF version

Theorem cnplimc 24400
Description: A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnplimc.k 𝐾 = (TopOpen‘ℂfld)
cnplimc.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimc ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnplimc.j . . . . 5 𝐽 = (𝐾t 𝐴)
2 cnplimc.k . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 23306 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 simpl 483 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 21685 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 587 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2921 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 21774 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1115 . . . 4 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 586 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110pm4.71rd 563 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))))
12 simpr 485 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
13 simplr 765 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
1413snssd 4740 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → {𝐵} ⊆ 𝐴)
15 ssequn2 4162 . . . . . . . . 9 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1614, 15sylib 219 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐴 ∪ {𝐵}) = 𝐴)
1716feq2d 6496 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹:(𝐴 ∪ {𝐵})⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
1812, 17mpbird 258 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:(𝐴 ∪ {𝐵})⟶ℂ)
1918feqmptd 6729 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)))
2016oveq2d 7167 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t 𝐴))
2120, 1syl6reqr 2879 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (𝐾t (𝐴 ∪ {𝐵})))
2221oveq1d 7166 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐽 CnP 𝐾) = ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾))
2322fveq1d 6668 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐽 CnP 𝐾)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
2419, 23eleq12d 2911 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
25 eqid 2824 . . . . 5 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
26 ifid 4508 . . . . . . 7 if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = (𝐹𝑥)
27 fveq2 6666 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2827adantl 482 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝐵}) ∧ 𝑥 = 𝐵) → (𝐹𝑥) = (𝐹𝐵))
2928ifeq1da 4499 . . . . . . 7 (𝑥 ∈ (𝐴 ∪ {𝐵}) → if(𝑥 = 𝐵, (𝐹𝑥), (𝐹𝑥)) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3026, 29syl5eqr 2874 . . . . . 6 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝐹𝑥) = if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
3130mpteq2ia 5153 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐹𝐵), (𝐹𝑥)))
32 simpll 763 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
3332, 13sseldd 3971 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3425, 2, 31, 12, 32, 33ellimc 24386 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐹𝑥)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
3524, 34bitr4d 283 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
3635pm5.32da 579 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
3711, 36bitrd 280 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  cun 3937  wss 3939  ifcif 4469  {csn 4563  cmpt 5142  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  t crest 16686  TopOpenctopn 16687  fldccnfld 20461  TopOnctopon 21434   CnP ccnp 21749   lim climc 24375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fi 8867  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-fz 12886  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cnp 21752  df-xms 22845  df-ms 22846  df-limc 24379
This theorem is referenced by:  cnlimc  24401  dvcnp2  24432  dvmulbr  24451  dvcobr  24458  cncfiooicclem1  42038  jumpncnp  42043  dirkercncf  42255  fourierdlem32  42287  fourierdlem33  42288  fourierdlem62  42316  fouriercnp  42374
  Copyright terms: Public domain W3C validator