![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iblposlem | Structured version Visualization version GIF version |
Description: Lemma for iblpos 24007. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
iblrelem.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
iblpos.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
iblposlem | ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iblpos.2 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) | |
2 | iblrelem.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
3 | 2 | le0neg2d 10950 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ -𝐵 ≤ 0)) |
4 | 1, 3 | mpbid 224 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ≤ 0) |
5 | 4 | adantrr 707 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ≤ 0) |
6 | simprr 763 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵) | |
7 | 2 | adantrr 707 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 𝐵 ∈ ℝ) |
8 | 7 | renegcld 10805 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ) |
9 | 0re 10380 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
10 | letri3 10464 | . . . . . . . . 9 ⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐵 = 0 ↔ (-𝐵 ≤ 0 ∧ 0 ≤ -𝐵))) | |
11 | 8, 9, 10 | sylancl 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → (-𝐵 = 0 ↔ (-𝐵 ≤ 0 ∧ 0 ≤ -𝐵))) |
12 | 5, 6, 11 | mpbir2and 703 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 = 0) |
13 | 12 | ifeq1da 4337 | . . . . . 6 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), 0, 0)) |
14 | ifid 4346 | . . . . . 6 ⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), 0, 0) = 0 | |
15 | 13, 14 | syl6eq 2830 | . . . . 5 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = 0) |
16 | 15 | mpteq2dv 4982 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ 0)) |
17 | fconstmpt 5413 | . . . 4 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
18 | 16, 17 | syl6eqr 2832 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (ℝ × {0})) |
19 | 18 | fveq2d 6452 | . 2 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = (∫2‘(ℝ × {0}))) |
20 | itg20 23952 | . 2 ⊢ (∫2‘(ℝ × {0})) = 0 | |
21 | 19, 20 | syl6eq 2830 | 1 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ifcif 4307 {csn 4398 class class class wbr 4888 ↦ cmpt 4967 × cxp 5355 ‘cfv 6137 ℝcr 10273 0cc0 10274 ≤ cle 10414 -cneg 10609 ∫2citg2 23831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-disj 4857 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-ofr 7177 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-q 12101 df-rp 12143 df-xadd 12263 df-ioo 12496 df-ico 12498 df-icc 12499 df-fz 12649 df-fzo 12790 df-fl 12917 df-seq 13125 df-exp 13184 df-hash 13442 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-clim 14636 df-sum 14834 df-xmet 20146 df-met 20147 df-ovol 23679 df-vol 23680 df-mbf 23834 df-itg1 23835 df-itg2 23836 df-0p 23885 |
This theorem is referenced by: iblpos 24007 itgposval 24010 |
Copyright terms: Public domain | W3C validator |