![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iblposlem | Structured version Visualization version GIF version |
Description: Lemma for iblpos 25854. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
iblrelem.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
iblpos.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
iblposlem | ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iblpos.2 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) | |
2 | iblrelem.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
3 | 2 | le0neg2d 11842 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ -𝐵 ≤ 0)) |
4 | 1, 3 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ≤ 0) |
5 | 4 | adantrr 717 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ≤ 0) |
6 | simprr 773 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵) | |
7 | 2 | adantrr 717 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 𝐵 ∈ ℝ) |
8 | 7 | renegcld 11697 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ) |
9 | 0re 11270 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
10 | letri3 11353 | . . . . . . . . 9 ⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐵 = 0 ↔ (-𝐵 ≤ 0 ∧ 0 ≤ -𝐵))) | |
11 | 8, 9, 10 | sylancl 586 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → (-𝐵 = 0 ↔ (-𝐵 ≤ 0 ∧ 0 ≤ -𝐵))) |
12 | 5, 6, 11 | mpbir2and 713 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 = 0) |
13 | 12 | ifeq1da 4565 | . . . . . 6 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), 0, 0)) |
14 | ifid 4574 | . . . . . 6 ⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), 0, 0) = 0 | |
15 | 13, 14 | eqtrdi 2793 | . . . . 5 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = 0) |
16 | 15 | mpteq2dv 5253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ 0)) |
17 | fconstmpt 5755 | . . . 4 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
18 | 16, 17 | eqtr4di 2795 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (ℝ × {0})) |
19 | 18 | fveq2d 6918 | . 2 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = (∫2‘(ℝ × {0}))) |
20 | itg20 25798 | . 2 ⊢ (∫2‘(ℝ × {0})) = 0 | |
21 | 19, 20 | eqtrdi 2793 | 1 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4534 {csn 4634 class class class wbr 5151 ↦ cmpt 5234 × cxp 5691 ‘cfv 6569 ℝcr 11161 0cc0 11162 ≤ cle 11303 -cneg 11500 ∫2citg2 25676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 ax-addf 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-disj 5119 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-ofr 7705 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-oi 9557 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-q 12998 df-rp 13042 df-xadd 13162 df-ioo 13397 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-fl 13838 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15729 df-xmet 21384 df-met 21385 df-ovol 25524 df-vol 25525 df-mbf 25679 df-itg1 25680 df-itg2 25681 df-0p 25730 |
This theorem is referenced by: iblpos 25854 itgposval 25857 |
Copyright terms: Public domain | W3C validator |