MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madurid Structured version   Visualization version   GIF version

Theorem madurid 22564
Description: Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
madurid.a 𝐴 = (𝑁 Mat 𝑅)
madurid.b 𝐵 = (Base‘𝐴)
madurid.j 𝐽 = (𝑁 maAdju 𝑅)
madurid.d 𝐷 = (𝑁 maDet 𝑅)
madurid.i 1 = (1r𝐴)
madurid.t · = (.r𝐴)
madurid.s = ( ·𝑠𝐴)
Assertion
Ref Expression
madurid ((𝑀𝐵𝑅 ∈ CRing) → (𝑀 · (𝐽𝑀)) = ((𝐷𝑀) 1 ))

Proof of Theorem madurid
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
4 simpr 484 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑅 ∈ CRing)
5 madurid.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
6 madurid.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6matrcl 22332 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 494 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
98adantr 480 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑁 ∈ Fin)
105, 2, 6matbas2i 22342 . . . 4 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1110adantr 480 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
12 madurid.j . . . . . . 7 𝐽 = (𝑁 maAdju 𝑅)
135, 12, 6maduf 22561 . . . . . 6 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
1413adantl 481 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝐽:𝐵𝐵)
15 simpl 482 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀𝐵)
1614, 15ffvelcdmd 7039 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽𝑀) ∈ 𝐵)
175, 2, 6matbas2i 22342 . . . 4 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1816, 17syl 17 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 2, 3, 4, 9, 9, 9, 11, 18mamuval 22313 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐽𝑀)) = (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))))
205, 1matmulr 22358 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
218, 20sylan 580 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
22 madurid.t . . . 4 · = (.r𝐴)
2321, 22eqtr4di 2782 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = · )
2423oveqd 7386 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐽𝑀)) = (𝑀 · (𝐽𝑀)))
25 madurid.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
26 simp1l 1198 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑀𝐵)
27 simp1r 1199 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
28 elmapi 8799 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
2911, 28syl 17 . . . . . . . . 9 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
30293ad2ant1 1133 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3130adantr 480 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
32 simpl2 1193 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑎𝑁)
33 simpr 484 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑐𝑁)
3431, 32, 33fovcdmd 7541 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → (𝑎𝑀𝑐) ∈ (Base‘𝑅))
35 simp3 1138 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
365, 12, 6, 25, 3, 2, 26, 27, 34, 35madugsum 22563 . . . . 5 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏)))) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
37 iftrue 4490 . . . . . . . . 9 (𝑎 = 𝑏 → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (𝐷𝑀))
3837adantl 481 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (𝐷𝑀))
3929ffnd 6671 . . . . . . . . . . . 12 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 Fn (𝑁 × 𝑁))
40 fnov 7500 . . . . . . . . . . . 12 (𝑀 Fn (𝑁 × 𝑁) ↔ 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
4139, 40sylib 218 . . . . . . . . . . 11 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
4241adantr 480 . . . . . . . . . 10 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
43 equtr2 2027 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑏𝑑 = 𝑏) → 𝑎 = 𝑑)
4443oveq1d 7384 . . . . . . . . . . . . . 14 ((𝑎 = 𝑏𝑑 = 𝑏) → (𝑎𝑀𝑐) = (𝑑𝑀𝑐))
4544ifeq1da 4516 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑏, (𝑑𝑀𝑐), (𝑑𝑀𝑐)))
46 ifid 4525 . . . . . . . . . . . . 13 if(𝑑 = 𝑏, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐)
4745, 46eqtrdi 2780 . . . . . . . . . . . 12 (𝑎 = 𝑏 → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐))
4847adantl 481 . . . . . . . . . . 11 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐))
4948mpoeq3dv 7448 . . . . . . . . . 10 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
5042, 49eqtr4d 2767 . . . . . . . . 9 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))
5150fveq2d 6844 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝐷𝑀) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
5238, 51eqtr2d 2765 . . . . . . 7 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
53523ad2antl1 1186 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
54 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
55 simpl1r 1226 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑅 ∈ CRing)
5693ad2ant1 1133 . . . . . . . . 9 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
5756adantr 480 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑁 ∈ Fin)
5830ad2antrr 726 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
59 simpll2 1214 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑎𝑁)
60 simpr 484 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑐𝑁)
6158, 59, 60fovcdmd 7541 . . . . . . . 8 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → (𝑎𝑀𝑐) ∈ (Base‘𝑅))
6230adantr 480 . . . . . . . . . 10 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
6362fovcdmda 7540 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ (𝑑𝑁𝑐𝑁)) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
64633impb 1114 . . . . . . . 8 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑑𝑁𝑐𝑁) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
65 simpl3 1194 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑁)
66 simpl2 1193 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑁)
67 neqne 2933 . . . . . . . . . 10 𝑎 = 𝑏𝑎𝑏)
6867necomd 2980 . . . . . . . . 9 𝑎 = 𝑏𝑏𝑎)
6968adantl 481 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑎)
7025, 2, 54, 55, 57, 61, 64, 65, 66, 69mdetralt2 22529 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))) = (0g𝑅))
71 ifid 4525 . . . . . . . . . . 11 if(𝑑 = 𝑎, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐)
72 oveq1 7376 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝑑𝑀𝑐) = (𝑎𝑀𝑐))
7372adantl 481 . . . . . . . . . . . 12 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑑 = 𝑎) → (𝑑𝑀𝑐) = (𝑎𝑀𝑐))
7473ifeq1da 4516 . . . . . . . . . . 11 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑑 = 𝑎, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))
7571, 74eqtr3id 2778 . . . . . . . . . 10 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝑑𝑀𝑐) = if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))
7675ifeq2d 4505 . . . . . . . . 9 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))
7776mpoeq3dv 7448 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
7877fveq2d 6844 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))))
79 iffalse 4493 . . . . . . . 8 𝑎 = 𝑏 → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (0g𝑅))
8079adantl 481 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (0g𝑅))
8170, 78, 803eqtr4d 2774 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8253, 81pm2.61dan 812 . . . . 5 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8336, 82eqtrd 2764 . . . 4 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8483mpoeq3dva 7446 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
85 madurid.i . . . . 5 1 = (1r𝐴)
8685oveq2i 7380 . . . 4 ((𝐷𝑀) 1 ) = ((𝐷𝑀) (1r𝐴))
87 crngring 20165 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
8887adantl 481 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑅 ∈ Ring)
8925, 5, 6, 2mdetf 22515 . . . . . . 7 (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅))
9089adantl 481 . . . . . 6 ((𝑀𝐵𝑅 ∈ CRing) → 𝐷:𝐵⟶(Base‘𝑅))
9190, 15ffvelcdmd 7039 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → (𝐷𝑀) ∈ (Base‘𝑅))
92 madurid.s . . . . . 6 = ( ·𝑠𝐴)
935, 2, 92, 54matsc 22370 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐷𝑀) ∈ (Base‘𝑅)) → ((𝐷𝑀) (1r𝐴)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
949, 88, 91, 93syl3anc 1373 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐷𝑀) (1r𝐴)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
9586, 94eqtrid 2776 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐷𝑀) 1 ) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
9684, 95eqtr4d 2767 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))) = ((𝐷𝑀) 1 ))
9719, 24, 963eqtr3d 2772 1 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀 · (𝐽𝑀)) = ((𝐷𝑀) 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  ifcif 4484  cotp 4593  cmpt 5183   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776  Fincfn 8895  Basecbs 17155  .rcmulr 17197   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  1rcur 20101  Ringcrg 20153  CRingccrg 20154   maMul cmmul 22310   Mat cmat 22327   maDet cmdat 22504   maAdju cmadu 22552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-efmnd 18778  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-symg 19284  df-pmtr 19356  df-psgn 19405  df-evpm 19406  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-dsmm 21674  df-frlm 21689  df-mamu 22311  df-mat 22328  df-mdet 22505  df-madu 22554
This theorem is referenced by:  madulid  22565  matinv  22597  cpmadurid  22787  cpmidgsum2  22799
  Copyright terms: Public domain W3C validator