MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madurid Structured version   Visualization version   GIF version

Theorem madurid 22599
Description: Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
madurid.a 𝐴 = (𝑁 Mat 𝑅)
madurid.b 𝐵 = (Base‘𝐴)
madurid.j 𝐽 = (𝑁 maAdju 𝑅)
madurid.d 𝐷 = (𝑁 maDet 𝑅)
madurid.i 1 = (1r𝐴)
madurid.t · = (.r𝐴)
madurid.s = ( ·𝑠𝐴)
Assertion
Ref Expression
madurid ((𝑀𝐵𝑅 ∈ CRing) → (𝑀 · (𝐽𝑀)) = ((𝐷𝑀) 1 ))

Proof of Theorem madurid
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2734 . . 3 (.r𝑅) = (.r𝑅)
4 simpr 484 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑅 ∈ CRing)
5 madurid.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
6 madurid.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6matrcl 22365 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 494 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
98adantr 480 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑁 ∈ Fin)
105, 2, 6matbas2i 22377 . . . 4 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1110adantr 480 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
12 madurid.j . . . . . . 7 𝐽 = (𝑁 maAdju 𝑅)
135, 12, 6maduf 22596 . . . . . 6 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
1413adantl 481 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝐽:𝐵𝐵)
15 simpl 482 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀𝐵)
1614, 15ffvelcdmd 7085 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽𝑀) ∈ 𝐵)
175, 2, 6matbas2i 22377 . . . 4 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1816, 17syl 17 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 2, 3, 4, 9, 9, 9, 11, 18mamuval 22346 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐽𝑀)) = (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))))
205, 1matmulr 22393 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
218, 20sylan 580 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
22 madurid.t . . . 4 · = (.r𝐴)
2321, 22eqtr4di 2787 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = · )
2423oveqd 7430 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐽𝑀)) = (𝑀 · (𝐽𝑀)))
25 madurid.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
26 simp1l 1197 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑀𝐵)
27 simp1r 1198 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
28 elmapi 8871 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
2911, 28syl 17 . . . . . . . . 9 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
30293ad2ant1 1133 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3130adantr 480 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
32 simpl2 1192 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑎𝑁)
33 simpr 484 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑐𝑁)
3431, 32, 33fovcdmd 7587 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → (𝑎𝑀𝑐) ∈ (Base‘𝑅))
35 simp3 1138 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
365, 12, 6, 25, 3, 2, 26, 27, 34, 35madugsum 22598 . . . . 5 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏)))) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
37 iftrue 4511 . . . . . . . . 9 (𝑎 = 𝑏 → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (𝐷𝑀))
3837adantl 481 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (𝐷𝑀))
3929ffnd 6717 . . . . . . . . . . . 12 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 Fn (𝑁 × 𝑁))
40 fnov 7546 . . . . . . . . . . . 12 (𝑀 Fn (𝑁 × 𝑁) ↔ 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
4139, 40sylib 218 . . . . . . . . . . 11 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
4241adantr 480 . . . . . . . . . 10 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
43 equtr2 2025 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑏𝑑 = 𝑏) → 𝑎 = 𝑑)
4443oveq1d 7428 . . . . . . . . . . . . . 14 ((𝑎 = 𝑏𝑑 = 𝑏) → (𝑎𝑀𝑐) = (𝑑𝑀𝑐))
4544ifeq1da 4537 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑏, (𝑑𝑀𝑐), (𝑑𝑀𝑐)))
46 ifid 4546 . . . . . . . . . . . . 13 if(𝑑 = 𝑏, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐)
4745, 46eqtrdi 2785 . . . . . . . . . . . 12 (𝑎 = 𝑏 → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐))
4847adantl 481 . . . . . . . . . . 11 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐))
4948mpoeq3dv 7494 . . . . . . . . . 10 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
5042, 49eqtr4d 2772 . . . . . . . . 9 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))
5150fveq2d 6890 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝐷𝑀) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
5238, 51eqtr2d 2770 . . . . . . 7 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
53523ad2antl1 1185 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
54 eqid 2734 . . . . . . . 8 (0g𝑅) = (0g𝑅)
55 simpl1r 1225 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑅 ∈ CRing)
5693ad2ant1 1133 . . . . . . . . 9 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
5756adantr 480 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑁 ∈ Fin)
5830ad2antrr 726 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
59 simpll2 1213 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑎𝑁)
60 simpr 484 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑐𝑁)
6158, 59, 60fovcdmd 7587 . . . . . . . 8 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → (𝑎𝑀𝑐) ∈ (Base‘𝑅))
6230adantr 480 . . . . . . . . . 10 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
6362fovcdmda 7586 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ (𝑑𝑁𝑐𝑁)) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
64633impb 1114 . . . . . . . 8 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑑𝑁𝑐𝑁) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
65 simpl3 1193 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑁)
66 simpl2 1192 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑁)
67 neqne 2939 . . . . . . . . . 10 𝑎 = 𝑏𝑎𝑏)
6867necomd 2986 . . . . . . . . 9 𝑎 = 𝑏𝑏𝑎)
6968adantl 481 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑎)
7025, 2, 54, 55, 57, 61, 64, 65, 66, 69mdetralt2 22564 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))) = (0g𝑅))
71 ifid 4546 . . . . . . . . . . 11 if(𝑑 = 𝑎, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐)
72 oveq1 7420 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝑑𝑀𝑐) = (𝑎𝑀𝑐))
7372adantl 481 . . . . . . . . . . . 12 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑑 = 𝑎) → (𝑑𝑀𝑐) = (𝑎𝑀𝑐))
7473ifeq1da 4537 . . . . . . . . . . 11 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑑 = 𝑎, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))
7571, 74eqtr3id 2783 . . . . . . . . . 10 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝑑𝑀𝑐) = if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))
7675ifeq2d 4526 . . . . . . . . 9 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))
7776mpoeq3dv 7494 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
7877fveq2d 6890 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))))
79 iffalse 4514 . . . . . . . 8 𝑎 = 𝑏 → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (0g𝑅))
8079adantl 481 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (0g𝑅))
8170, 78, 803eqtr4d 2779 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8253, 81pm2.61dan 812 . . . . 5 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8336, 82eqtrd 2769 . . . 4 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8483mpoeq3dva 7492 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
85 madurid.i . . . . 5 1 = (1r𝐴)
8685oveq2i 7424 . . . 4 ((𝐷𝑀) 1 ) = ((𝐷𝑀) (1r𝐴))
87 crngring 20211 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
8887adantl 481 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑅 ∈ Ring)
8925, 5, 6, 2mdetf 22550 . . . . . . 7 (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅))
9089adantl 481 . . . . . 6 ((𝑀𝐵𝑅 ∈ CRing) → 𝐷:𝐵⟶(Base‘𝑅))
9190, 15ffvelcdmd 7085 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → (𝐷𝑀) ∈ (Base‘𝑅))
92 madurid.s . . . . . 6 = ( ·𝑠𝐴)
935, 2, 92, 54matsc 22405 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐷𝑀) ∈ (Base‘𝑅)) → ((𝐷𝑀) (1r𝐴)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
949, 88, 91, 93syl3anc 1372 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐷𝑀) (1r𝐴)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
9586, 94eqtrid 2781 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐷𝑀) 1 ) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
9684, 95eqtr4d 2772 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))) = ((𝐷𝑀) 1 ))
9719, 24, 963eqtr3d 2777 1 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀 · (𝐽𝑀)) = ((𝐷𝑀) 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  ifcif 4505  cotp 4614  cmpt 5205   × cxp 5663   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  cmpo 7415  m cmap 8848  Fincfn 8967  Basecbs 17230  .rcmulr 17275   ·𝑠 cvsca 17278  0gc0g 17456   Σg cgsu 17457  1rcur 20147  Ringcrg 20199  CRingccrg 20200   maMul cmmul 22343   Mat cmat 22360   maDet cmdat 22539   maAdju cmadu 22587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1511  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-splice 14771  df-reverse 14780  df-s2 14870  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-efmnd 18852  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-symg 19356  df-pmtr 19429  df-psgn 19478  df-evpm 19479  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-dvr 20370  df-rhm 20441  df-subrng 20515  df-subrg 20539  df-drng 20700  df-lmod 20829  df-lss 20899  df-sra 21141  df-rgmod 21142  df-cnfld 21328  df-zring 21421  df-zrh 21477  df-dsmm 21707  df-frlm 21722  df-mamu 22344  df-mat 22361  df-mdet 22540  df-madu 22589
This theorem is referenced by:  madulid  22600  matinv  22632  cpmadurid  22822  cpmidgsum2  22834
  Copyright terms: Public domain W3C validator