MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdilem2 Structured version   Visualization version   GIF version

Theorem lgsdilem2 27277
Description: Lemma for lgsdi 27278. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1 (𝜑𝐴 ∈ ℤ)
lgsdilem2.2 (𝜑𝑀 ∈ ℤ)
lgsdilem2.3 (𝜑𝑁 ∈ ℤ)
lgsdilem2.4 (𝜑𝑀 ≠ 0)
lgsdilem2.5 (𝜑𝑁 ≠ 0)
lgsdilem2.6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
Assertion
Ref Expression
lgsdilem2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Distinct variable groups:   𝑛,𝑀   𝐴,𝑛   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)

Proof of Theorem lgsdilem2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulrid 11148 . . 3 (𝑘 ∈ ℂ → (𝑘 · 1) = 𝑘)
21adantl 481 . 2 ((𝜑𝑘 ∈ ℂ) → (𝑘 · 1) = 𝑘)
3 lgsdilem2.2 . . . 4 (𝜑𝑀 ∈ ℤ)
4 lgsdilem2.4 . . . 4 (𝜑𝑀 ≠ 0)
5 nnabscl 15268 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
63, 4, 5syl2anc 584 . . 3 (𝜑 → (abs‘𝑀) ∈ ℕ)
7 nnuz 12812 . . 3 ℕ = (ℤ‘1)
86, 7eleqtrdi 2838 . 2 (𝜑 → (abs‘𝑀) ∈ (ℤ‘1))
96nnzd 12532 . . 3 (𝜑 → (abs‘𝑀) ∈ ℤ)
10 lgsdilem2.3 . . . . . 6 (𝜑𝑁 ∈ ℤ)
113, 10zmulcld 12620 . . . . 5 (𝜑 → (𝑀 · 𝑁) ∈ ℤ)
123zcnd 12615 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1310zcnd 12615 . . . . . 6 (𝜑𝑁 ∈ ℂ)
14 lgsdilem2.5 . . . . . 6 (𝜑𝑁 ≠ 0)
1512, 13, 4, 14mulne0d 11806 . . . . 5 (𝜑 → (𝑀 · 𝑁) ≠ 0)
16 nnabscl 15268 . . . . 5 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
1711, 15, 16syl2anc 584 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
1817nnzd 12532 . . 3 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℤ)
1912abscld 15381 . . . . 5 (𝜑 → (abs‘𝑀) ∈ ℝ)
2013abscld 15381 . . . . 5 (𝜑 → (abs‘𝑁) ∈ ℝ)
2112absge0d 15389 . . . . 5 (𝜑 → 0 ≤ (abs‘𝑀))
22 nnabscl 15268 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
2310, 14, 22syl2anc 584 . . . . . 6 (𝜑 → (abs‘𝑁) ∈ ℕ)
2423nnge1d 12210 . . . . 5 (𝜑 → 1 ≤ (abs‘𝑁))
2519, 20, 21, 24lemulge11d 12096 . . . 4 (𝜑 → (abs‘𝑀) ≤ ((abs‘𝑀) · (abs‘𝑁)))
2612, 13absmuld 15399 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
2725, 26breqtrrd 5130 . . 3 (𝜑 → (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁)))
28 eluz2 12775 . . 3 ((abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)) ↔ ((abs‘𝑀) ∈ ℤ ∧ (abs‘(𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁))))
299, 18, 27, 28syl3anbrc 1344 . 2 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)))
30 lgsdilem2.1 . . . . . 6 (𝜑𝐴 ∈ ℤ)
31 lgsdilem2.6 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
3231lgsfcl3 27262 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝐹:ℕ⟶ℤ)
3330, 3, 4, 32syl3anc 1373 . . . . 5 (𝜑𝐹:ℕ⟶ℤ)
34 elfznn 13490 . . . . 5 (𝑘 ∈ (1...(abs‘𝑀)) → 𝑘 ∈ ℕ)
35 ffvelcdm 7035 . . . . 5 ((𝐹:ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
3633, 34, 35syl2an 596 . . . 4 ((𝜑𝑘 ∈ (1...(abs‘𝑀))) → (𝐹𝑘) ∈ ℤ)
3736zcnd 12615 . . 3 ((𝜑𝑘 ∈ (1...(abs‘𝑀))) → (𝐹𝑘) ∈ ℂ)
38 mulcl 11128 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
3938adantl 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
408, 37, 39seqcl 13963 . 2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℂ)
416peano2nnd 12179 . . . . 5 (𝜑 → ((abs‘𝑀) + 1) ∈ ℕ)
42 elfzuz 13457 . . . . 5 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1)))
43 eluznn 12853 . . . . 5 ((((abs‘𝑀) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1))) → 𝑘 ∈ ℕ)
4441, 42, 43syl2an 596 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℕ)
45 eleq1w 2811 . . . . . 6 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
46 oveq2 7377 . . . . . . 7 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
47 oveq1 7376 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
4846, 47oveq12d 7387 . . . . . 6 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
4945, 48ifbieq1d 4509 . . . . 5 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
50 ovex 7402 . . . . . 6 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ V
51 1ex 11146 . . . . . 6 1 ∈ V
5250, 51ifex 4535 . . . . 5 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ V
5349, 31, 52fvmpt 6950 . . . 4 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
5444, 53syl 17 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
55 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
563ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
57 zq 12889 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
5856, 57syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℚ)
59 pcabs 16822 . . . . . . . . 9 ((𝑘 ∈ ℙ ∧ 𝑀 ∈ ℚ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
6055, 58, 59syl2anc 584 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
61 elfzle1 13464 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → ((abs‘𝑀) + 1) ≤ 𝑘)
6261adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) + 1) ≤ 𝑘)
63 elfzelz 13461 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ ℤ)
64 zltp1le 12559 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
659, 63, 64syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
6662, 65mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (abs‘𝑀) < 𝑘)
6719adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (abs‘𝑀) ∈ ℝ)
6863adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℤ)
6968zred 12614 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℝ)
7067, 69ltnled 11297 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
7166, 70mpbid 232 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ¬ 𝑘 ≤ (abs‘𝑀))
7271adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ≤ (abs‘𝑀))
73 prmz 16621 . . . . . . . . . . . 12 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
7473adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
754ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
7656, 75, 5syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (abs‘𝑀) ∈ ℕ)
77 dvdsle 16256 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ (abs‘𝑀) ∈ ℕ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
7874, 76, 77syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
7972, 78mtod 198 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ (abs‘𝑀))
80 pceq0 16818 . . . . . . . . . 10 ((𝑘 ∈ ℙ ∧ (abs‘𝑀) ∈ ℕ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
8155, 76, 80syl2anc 584 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
8279, 81mpbird 257 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = 0)
8360, 82eqtr3d 2766 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) = 0)
8483oveq2d 7385 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑0))
8530ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
86 lgscl 27255 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
8785, 74, 86syl2anc 584 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
8887zcnd 12615 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
8988exp0d 14081 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑0) = 1)
9084, 89eqtrd 2764 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = 1)
9190ifeq1da 4516 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, 1, 1))
92 ifid 4525 . . . 4 if(𝑘 ∈ ℙ, 1, 1) = 1
9391, 92eqtrdi 2780 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
9454, 93eqtrd 2764 . 2 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = 1)
952, 8, 29, 40, 94seqid2 13989 1 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4484   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cn 12162  cz 12505  cuz 12769  cq 12883  ...cfz 13444  seqcseq 13942  cexp 14002  abscabs 15176  cdvds 16198  cprime 16617   pCnt cpc 16783   /L clgs 27238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-pc 16784  df-lgs 27239
This theorem is referenced by:  lgsdi  27278
  Copyright terms: Public domain W3C validator