MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdilem2 Structured version   Visualization version   GIF version

Theorem lgsdilem2 27395
Description: Lemma for lgsdi 27396. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1 (𝜑𝐴 ∈ ℤ)
lgsdilem2.2 (𝜑𝑀 ∈ ℤ)
lgsdilem2.3 (𝜑𝑁 ∈ ℤ)
lgsdilem2.4 (𝜑𝑀 ≠ 0)
lgsdilem2.5 (𝜑𝑁 ≠ 0)
lgsdilem2.6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
Assertion
Ref Expression
lgsdilem2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Distinct variable groups:   𝑛,𝑀   𝐴,𝑛   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)

Proof of Theorem lgsdilem2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulrid 11288 . . 3 (𝑘 ∈ ℂ → (𝑘 · 1) = 𝑘)
21adantl 481 . 2 ((𝜑𝑘 ∈ ℂ) → (𝑘 · 1) = 𝑘)
3 lgsdilem2.2 . . . 4 (𝜑𝑀 ∈ ℤ)
4 lgsdilem2.4 . . . 4 (𝜑𝑀 ≠ 0)
5 nnabscl 15374 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
63, 4, 5syl2anc 583 . . 3 (𝜑 → (abs‘𝑀) ∈ ℕ)
7 nnuz 12946 . . 3 ℕ = (ℤ‘1)
86, 7eleqtrdi 2854 . 2 (𝜑 → (abs‘𝑀) ∈ (ℤ‘1))
96nnzd 12666 . . 3 (𝜑 → (abs‘𝑀) ∈ ℤ)
10 lgsdilem2.3 . . . . . 6 (𝜑𝑁 ∈ ℤ)
113, 10zmulcld 12753 . . . . 5 (𝜑 → (𝑀 · 𝑁) ∈ ℤ)
123zcnd 12748 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1310zcnd 12748 . . . . . 6 (𝜑𝑁 ∈ ℂ)
14 lgsdilem2.5 . . . . . 6 (𝜑𝑁 ≠ 0)
1512, 13, 4, 14mulne0d 11942 . . . . 5 (𝜑 → (𝑀 · 𝑁) ≠ 0)
16 nnabscl 15374 . . . . 5 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
1711, 15, 16syl2anc 583 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
1817nnzd 12666 . . 3 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℤ)
1912abscld 15485 . . . . 5 (𝜑 → (abs‘𝑀) ∈ ℝ)
2013abscld 15485 . . . . 5 (𝜑 → (abs‘𝑁) ∈ ℝ)
2112absge0d 15493 . . . . 5 (𝜑 → 0 ≤ (abs‘𝑀))
22 nnabscl 15374 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
2310, 14, 22syl2anc 583 . . . . . 6 (𝜑 → (abs‘𝑁) ∈ ℕ)
2423nnge1d 12341 . . . . 5 (𝜑 → 1 ≤ (abs‘𝑁))
2519, 20, 21, 24lemulge11d 12232 . . . 4 (𝜑 → (abs‘𝑀) ≤ ((abs‘𝑀) · (abs‘𝑁)))
2612, 13absmuld 15503 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
2725, 26breqtrrd 5194 . . 3 (𝜑 → (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁)))
28 eluz2 12909 . . 3 ((abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)) ↔ ((abs‘𝑀) ∈ ℤ ∧ (abs‘(𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁))))
299, 18, 27, 28syl3anbrc 1343 . 2 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)))
30 lgsdilem2.1 . . . . . 6 (𝜑𝐴 ∈ ℤ)
31 lgsdilem2.6 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
3231lgsfcl3 27380 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝐹:ℕ⟶ℤ)
3330, 3, 4, 32syl3anc 1371 . . . . 5 (𝜑𝐹:ℕ⟶ℤ)
34 elfznn 13613 . . . . 5 (𝑘 ∈ (1...(abs‘𝑀)) → 𝑘 ∈ ℕ)
35 ffvelcdm 7115 . . . . 5 ((𝐹:ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
3633, 34, 35syl2an 595 . . . 4 ((𝜑𝑘 ∈ (1...(abs‘𝑀))) → (𝐹𝑘) ∈ ℤ)
3736zcnd 12748 . . 3 ((𝜑𝑘 ∈ (1...(abs‘𝑀))) → (𝐹𝑘) ∈ ℂ)
38 mulcl 11268 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
3938adantl 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
408, 37, 39seqcl 14073 . 2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℂ)
416peano2nnd 12310 . . . . 5 (𝜑 → ((abs‘𝑀) + 1) ∈ ℕ)
42 elfzuz 13580 . . . . 5 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1)))
43 eluznn 12983 . . . . 5 ((((abs‘𝑀) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1))) → 𝑘 ∈ ℕ)
4441, 42, 43syl2an 595 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℕ)
45 eleq1w 2827 . . . . . 6 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
46 oveq2 7456 . . . . . . 7 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
47 oveq1 7455 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
4846, 47oveq12d 7466 . . . . . 6 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
4945, 48ifbieq1d 4572 . . . . 5 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
50 ovex 7481 . . . . . 6 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ V
51 1ex 11286 . . . . . 6 1 ∈ V
5250, 51ifex 4598 . . . . 5 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ V
5349, 31, 52fvmpt 7029 . . . 4 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
5444, 53syl 17 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
55 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
563ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
57 zq 13019 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
5856, 57syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℚ)
59 pcabs 16922 . . . . . . . . 9 ((𝑘 ∈ ℙ ∧ 𝑀 ∈ ℚ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
6055, 58, 59syl2anc 583 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
61 elfzle1 13587 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → ((abs‘𝑀) + 1) ≤ 𝑘)
6261adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) + 1) ≤ 𝑘)
63 elfzelz 13584 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ ℤ)
64 zltp1le 12693 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
659, 63, 64syl2an 595 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
6662, 65mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (abs‘𝑀) < 𝑘)
6719adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (abs‘𝑀) ∈ ℝ)
6863adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℤ)
6968zred 12747 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℝ)
7067, 69ltnled 11437 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
7166, 70mpbid 232 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ¬ 𝑘 ≤ (abs‘𝑀))
7271adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ≤ (abs‘𝑀))
73 prmz 16722 . . . . . . . . . . . 12 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
7473adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
754ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
7656, 75, 5syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (abs‘𝑀) ∈ ℕ)
77 dvdsle 16358 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ (abs‘𝑀) ∈ ℕ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
7874, 76, 77syl2anc 583 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
7972, 78mtod 198 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ (abs‘𝑀))
80 pceq0 16918 . . . . . . . . . 10 ((𝑘 ∈ ℙ ∧ (abs‘𝑀) ∈ ℕ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
8155, 76, 80syl2anc 583 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
8279, 81mpbird 257 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = 0)
8360, 82eqtr3d 2782 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) = 0)
8483oveq2d 7464 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑0))
8530ad2antrr 725 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
86 lgscl 27373 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
8785, 74, 86syl2anc 583 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
8887zcnd 12748 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
8988exp0d 14190 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑0) = 1)
9084, 89eqtrd 2780 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = 1)
9190ifeq1da 4579 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, 1, 1))
92 ifid 4588 . . . 4 if(𝑘 ∈ ℙ, 1, 1) = 1
9391, 92eqtrdi 2796 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
9454, 93eqtrd 2780 . 2 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = 1)
952, 8, 29, 40, 94seqid2 14099 1 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cn 12293  cz 12639  cuz 12903  cq 13013  ...cfz 13567  seqcseq 14052  cexp 14112  abscabs 15283  cdvds 16302  cprime 16718   pCnt cpc 16883   /L clgs 27356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-pc 16884  df-lgs 27357
This theorem is referenced by:  lgsdi  27396
  Copyright terms: Public domain W3C validator