MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplitlem Structured version   Visualization version   GIF version

Theorem dmdprdsplitlem 19936
Description: Lemma for dmdprdsplit 19946. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dmdprdsplitlem.0 0 = (0g𝐺)
dmdprdsplitlem.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dmdprdsplitlem.1 (𝜑𝐺dom DProd 𝑆)
dmdprdsplitlem.2 (𝜑 → dom 𝑆 = 𝐼)
dmdprdsplitlem.3 (𝜑𝐴𝐼)
dmdprdsplitlem.4 (𝜑𝐹𝑊)
dmdprdsplitlem.5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
Assertion
Ref Expression
dmdprdsplitlem ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Distinct variable groups:   0 ,   ,𝑖,𝐴   ,𝐺,𝑖   ,𝐼,𝑖   ,𝐹   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   𝑋(,𝑖)   0 (𝑖)

Proof of Theorem dmdprdsplitlem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplitlem.5 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
2 dmdprdsplitlem.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dmdprdsplitlem.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
42, 3dprdf2 19906 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5 dmdprdsplitlem.3 . . . . . . 7 (𝜑𝐴𝐼)
64, 5fssresd 6695 . . . . . 6 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
7 fdm 6665 . . . . . 6 ((𝑆𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆𝐴) = 𝐴)
8 dmdprdsplitlem.0 . . . . . . 7 0 = (0g𝐺)
9 eqid 2729 . . . . . . 7 {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } = {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 }
108, 9eldprd 19903 . . . . . 6 (dom (𝑆𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
116, 7, 103syl 18 . . . . 5 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
121, 11mpbid 232 . . . 4 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
1312simprd 495 . . 3 (𝜑 → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1413adantr 480 . 2 ((𝜑𝑋 ∈ (𝐼𝐴)) → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
15 simprr 772 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1612simpld 494 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐴))
1716ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆𝐴))
186, 7syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐴) = 𝐴)
1918ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆𝐴) = 𝐴)
20 simprl 770 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
21 eqid 2729 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
229, 17, 19, 20, 21dprdff 19911 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺))
2322feqmptd 6895 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛𝐴 ↦ (𝑓𝑛)))
245ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴𝐼)
2524resmptd 5995 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
26 iftrue 4484 . . . . . . . . . 10 (𝑛𝐴 → if(𝑛𝐴, (𝑓𝑛), 0 ) = (𝑓𝑛))
2726mpteq2ia 5190 . . . . . . . . 9 (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐴 ↦ (𝑓𝑛))
2825, 27eqtrdi 2780 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ (𝑓𝑛)))
2923, 28eqtr4d 2767 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴))
3029oveq2d 7369 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)))
31 eqid 2729 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
322ad2antrr 726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
33 dprdgrp 19904 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
34 grpmnd 18837 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3532, 33, 343syl 18 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
362, 3dprddomcld 19900 . . . . . . . 8 (𝜑𝐼 ∈ V)
3736ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
38 dmdprdsplitlem.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
393ad2antrr 726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
4017adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝐺dom DProd (𝑆𝐴))
4119adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → dom (𝑆𝐴) = 𝐴)
42 simplrl 776 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
439, 40, 41, 42dprdfcl 19912 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ((𝑆𝐴)‘𝑛))
44 fvres 6845 . . . . . . . . . . . 12 (𝑛𝐴 → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4544adantl 481 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4643, 45eleqtrd 2830 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝑆𝑛))
474ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺))
4847ffvelcdmda 7022 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → (𝑆𝑛) ∈ (SubGrp‘𝐺))
498subg0cl 19031 . . . . . . . . . . . 12 ((𝑆𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑛))
5048, 49syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 0 ∈ (𝑆𝑛))
5150adantr 480 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ ¬ 𝑛𝐴) → 0 ∈ (𝑆𝑛))
5246, 51ifclda 4514 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ (𝑆𝑛))
5336mptexd 7164 . . . . . . . . . . 11 (𝜑 → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
5453ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
55 funmpt 6524 . . . . . . . . . . 11 Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
5655a1i 11 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
579, 17, 19, 20dprdffsupp 19913 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
58 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛𝐴)
59 eldifn 4085 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6059ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6158, 60eldifd 3916 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 )))
62 ssidd 3961 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
6336, 5ssexd 5266 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ V)
6463ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V)
658fvexi 6840 . . . . . . . . . . . . . . . . 17 0 ∈ V
6665a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V)
6722, 62, 64, 66suppssr 8135 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6867adantlr 715 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6961, 68syldan 591 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → (𝑓𝑛) = 0 )
7069ifeq1da 4510 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑛𝐴, 0 , 0 ))
71 ifid 4519 . . . . . . . . . . . 12 if(𝑛𝐴, 0 , 0 ) = 0
7270, 71eqtrdi 2780 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
7372, 37suppss2 8140 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))
74 fsuppsssupp 9290 . . . . . . . . . 10 ((((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V ∧ Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7554, 56, 57, 73, 74syl22anc 838 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7638, 32, 39, 52, 75dprdwd 19910 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ 𝑊)
7738, 32, 39, 76, 21dprdff 19911 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )):𝐼⟶(Base‘𝐺))
7838, 32, 39, 76, 31dprdfcntz 19914 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ⊆ ((Cntz‘𝐺)‘ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
79 eldifn 4085 . . . . . . . . . 10 (𝑛 ∈ (𝐼𝐴) → ¬ 𝑛𝐴)
8079adantl 481 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → ¬ 𝑛𝐴)
8180iffalsed 4489 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
8281, 37suppss2 8140 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ 𝐴)
8321, 8, 31, 35, 37, 77, 78, 82, 75gsumzres 19806 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8415, 30, 833eqtrd 2768 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
85 dmdprdsplitlem.4 . . . . . . 7 (𝜑𝐹𝑊)
8685ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹𝑊)
878, 38, 32, 39, 86, 76dprdf11 19922 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ↔ 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8884, 87mpbid 232 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
8988fveq1d 6828 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋))
90 eldifi 4084 . . . . 5 (𝑋 ∈ (𝐼𝐴) → 𝑋𝐼)
9190ad2antlr 727 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋𝐼)
92 eleq1 2816 . . . . . 6 (𝑛 = 𝑋 → (𝑛𝐴𝑋𝐴))
93 fveq2 6826 . . . . . 6 (𝑛 = 𝑋 → (𝑓𝑛) = (𝑓𝑋))
9492, 93ifbieq1d 4503 . . . . 5 (𝑛 = 𝑋 → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑋𝐴, (𝑓𝑋), 0 ))
95 eqid 2729 . . . . 5 (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
96 fvex 6839 . . . . . 6 (𝑓𝑛) ∈ V
9796, 65ifex 4529 . . . . 5 if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ V
9894, 95, 97fvmpt3i 6939 . . . 4 (𝑋𝐼 → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
9991, 98syl 17 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
100 eldifn 4085 . . . . 5 (𝑋 ∈ (𝐼𝐴) → ¬ 𝑋𝐴)
101100ad2antlr 727 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋𝐴)
102101iffalsed 4489 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋𝐴, (𝑓𝑋), 0 ) = 0 )
10389, 99, 1023eqtrd 2768 . 2 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = 0 )
10414, 103rexlimddv 3136 1 ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  dom cdm 5623  cres 5625  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353   supp csupp 8100  Xcixp 8831   finSupp cfsupp 9270  Basecbs 17138  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  Grpcgrp 18830  SubGrpcsubg 19017  Cntzccntz 19212   DProd cdprd 19892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-gim 19156  df-cntz 19214  df-oppg 19243  df-cmn 19679  df-dprd 19894
This theorem is referenced by:  dprddisj2  19938
  Copyright terms: Public domain W3C validator