MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplitlem Structured version   Visualization version   GIF version

Theorem dmdprdsplitlem 19088
Description: Lemma for dmdprdsplit 19098. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dmdprdsplitlem.0 0 = (0g𝐺)
dmdprdsplitlem.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dmdprdsplitlem.1 (𝜑𝐺dom DProd 𝑆)
dmdprdsplitlem.2 (𝜑 → dom 𝑆 = 𝐼)
dmdprdsplitlem.3 (𝜑𝐴𝐼)
dmdprdsplitlem.4 (𝜑𝐹𝑊)
dmdprdsplitlem.5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
Assertion
Ref Expression
dmdprdsplitlem ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Distinct variable groups:   0 ,   ,𝑖,𝐴   ,𝐺,𝑖   ,𝐼,𝑖   ,𝐹   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   𝑋(,𝑖)   0 (𝑖)

Proof of Theorem dmdprdsplitlem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplitlem.5 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
2 dmdprdsplitlem.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dmdprdsplitlem.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
42, 3dprdf2 19058 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5 dmdprdsplitlem.3 . . . . . . 7 (𝜑𝐴𝐼)
64, 5fssresd 6538 . . . . . 6 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
7 fdm 6515 . . . . . 6 ((𝑆𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆𝐴) = 𝐴)
8 dmdprdsplitlem.0 . . . . . . 7 0 = (0g𝐺)
9 eqid 2818 . . . . . . 7 {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } = {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 }
108, 9eldprd 19055 . . . . . 6 (dom (𝑆𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
116, 7, 103syl 18 . . . . 5 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
121, 11mpbid 233 . . . 4 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
1312simprd 496 . . 3 (𝜑 → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1413adantr 481 . 2 ((𝜑𝑋 ∈ (𝐼𝐴)) → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
15 simprr 769 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1612simpld 495 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐴))
1716ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆𝐴))
186, 7syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐴) = 𝐴)
1918ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆𝐴) = 𝐴)
20 simprl 767 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
21 eqid 2818 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
229, 17, 19, 20, 21dprdff 19063 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺))
2322feqmptd 6726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛𝐴 ↦ (𝑓𝑛)))
245ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴𝐼)
2524resmptd 5901 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
26 iftrue 4469 . . . . . . . . . 10 (𝑛𝐴 → if(𝑛𝐴, (𝑓𝑛), 0 ) = (𝑓𝑛))
2726mpteq2ia 5148 . . . . . . . . 9 (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐴 ↦ (𝑓𝑛))
2825, 27syl6eq 2869 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ (𝑓𝑛)))
2923, 28eqtr4d 2856 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴))
3029oveq2d 7161 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)))
31 eqid 2818 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
322ad2antrr 722 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
33 dprdgrp 19056 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
34 grpmnd 18048 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3532, 33, 343syl 18 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
362, 3dprddomcld 19052 . . . . . . . 8 (𝜑𝐼 ∈ V)
3736ad2antrr 722 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
38 dmdprdsplitlem.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
393ad2antrr 722 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
4017adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝐺dom DProd (𝑆𝐴))
4119adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → dom (𝑆𝐴) = 𝐴)
42 simplrl 773 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
439, 40, 41, 42dprdfcl 19064 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ((𝑆𝐴)‘𝑛))
44 fvres 6682 . . . . . . . . . . . 12 (𝑛𝐴 → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4544adantl 482 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4643, 45eleqtrd 2912 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝑆𝑛))
474ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺))
4847ffvelrnda 6843 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → (𝑆𝑛) ∈ (SubGrp‘𝐺))
498subg0cl 18225 . . . . . . . . . . . 12 ((𝑆𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑛))
5048, 49syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 0 ∈ (𝑆𝑛))
5150adantr 481 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ ¬ 𝑛𝐴) → 0 ∈ (𝑆𝑛))
5246, 51ifclda 4497 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ (𝑆𝑛))
5336mptexd 6978 . . . . . . . . . . 11 (𝜑 → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
5453ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
55 funmpt 6386 . . . . . . . . . . 11 Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
5655a1i 11 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
579, 17, 19, 20dprdffsupp 19065 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
58 simpr 485 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛𝐴)
59 eldifn 4101 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6059ad2antlr 723 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6158, 60eldifd 3944 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 )))
62 ssidd 3987 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
6336, 5ssexd 5219 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ V)
6463ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V)
658fvexi 6677 . . . . . . . . . . . . . . . . 17 0 ∈ V
6665a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V)
6722, 62, 64, 66suppssr 7850 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6867adantlr 711 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6961, 68syldan 591 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → (𝑓𝑛) = 0 )
7069ifeq1da 4493 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑛𝐴, 0 , 0 ))
71 ifid 4502 . . . . . . . . . . . 12 if(𝑛𝐴, 0 , 0 ) = 0
7270, 71syl6eq 2869 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
7372, 37suppss2 7853 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))
74 fsuppsssupp 8837 . . . . . . . . . 10 ((((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V ∧ Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7554, 56, 57, 73, 74syl22anc 834 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7638, 32, 39, 52, 75dprdwd 19062 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ 𝑊)
7738, 32, 39, 76, 21dprdff 19063 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )):𝐼⟶(Base‘𝐺))
7838, 32, 39, 76, 31dprdfcntz 19066 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ⊆ ((Cntz‘𝐺)‘ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
79 eldifn 4101 . . . . . . . . . 10 (𝑛 ∈ (𝐼𝐴) → ¬ 𝑛𝐴)
8079adantl 482 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → ¬ 𝑛𝐴)
8180iffalsed 4474 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
8281, 37suppss2 7853 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ 𝐴)
8321, 8, 31, 35, 37, 77, 78, 82, 75gsumzres 18958 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8415, 30, 833eqtrd 2857 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
85 dmdprdsplitlem.4 . . . . . . 7 (𝜑𝐹𝑊)
8685ad2antrr 722 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹𝑊)
878, 38, 32, 39, 86, 76dprdf11 19074 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ↔ 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8884, 87mpbid 233 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
8988fveq1d 6665 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋))
90 eldifi 4100 . . . . 5 (𝑋 ∈ (𝐼𝐴) → 𝑋𝐼)
9190ad2antlr 723 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋𝐼)
92 eleq1 2897 . . . . . 6 (𝑛 = 𝑋 → (𝑛𝐴𝑋𝐴))
93 fveq2 6663 . . . . . 6 (𝑛 = 𝑋 → (𝑓𝑛) = (𝑓𝑋))
9492, 93ifbieq1d 4486 . . . . 5 (𝑛 = 𝑋 → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑋𝐴, (𝑓𝑋), 0 ))
95 eqid 2818 . . . . 5 (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
96 fvex 6676 . . . . . 6 (𝑓𝑛) ∈ V
9796, 65ifex 4511 . . . . 5 if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ V
9894, 95, 97fvmpt3i 6766 . . . 4 (𝑋𝐼 → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
9991, 98syl 17 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
100 eldifn 4101 . . . . 5 (𝑋 ∈ (𝐼𝐴) → ¬ 𝑋𝐴)
101100ad2antlr 723 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋𝐴)
102101iffalsed 4474 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋𝐴, (𝑓𝑋), 0 ) = 0 )
10389, 99, 1023eqtrd 2857 . 2 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = 0 )
10414, 103rexlimddv 3288 1 ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wrex 3136  {crab 3139  Vcvv 3492  cdif 3930  wss 3933  ifcif 4463   class class class wbr 5057  cmpt 5137  dom cdm 5548  cres 5550  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7145   supp csupp 7819  Xcixp 8449   finSupp cfsupp 8821  Basecbs 16471  0gc0g 16701   Σg cgsu 16702  Mndcmnd 17899  Grpcgrp 18041  SubGrpcsubg 18211  Cntzccntz 18383   DProd cdprd 19044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-gim 18337  df-cntz 18385  df-oppg 18412  df-cmn 18837  df-dprd 19046
This theorem is referenced by:  dprddisj2  19090
  Copyright terms: Public domain W3C validator