MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplitlem Structured version   Visualization version   GIF version

Theorem dmdprdsplitlem 19396
Description: Lemma for dmdprdsplit 19406. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dmdprdsplitlem.0 0 = (0g𝐺)
dmdprdsplitlem.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dmdprdsplitlem.1 (𝜑𝐺dom DProd 𝑆)
dmdprdsplitlem.2 (𝜑 → dom 𝑆 = 𝐼)
dmdprdsplitlem.3 (𝜑𝐴𝐼)
dmdprdsplitlem.4 (𝜑𝐹𝑊)
dmdprdsplitlem.5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
Assertion
Ref Expression
dmdprdsplitlem ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Distinct variable groups:   0 ,   ,𝑖,𝐴   ,𝐺,𝑖   ,𝐼,𝑖   ,𝐹   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   𝑋(,𝑖)   0 (𝑖)

Proof of Theorem dmdprdsplitlem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplitlem.5 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
2 dmdprdsplitlem.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dmdprdsplitlem.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
42, 3dprdf2 19366 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5 dmdprdsplitlem.3 . . . . . . 7 (𝜑𝐴𝐼)
64, 5fssresd 6575 . . . . . 6 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
7 fdm 6543 . . . . . 6 ((𝑆𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆𝐴) = 𝐴)
8 dmdprdsplitlem.0 . . . . . . 7 0 = (0g𝐺)
9 eqid 2734 . . . . . . 7 {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } = {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 }
108, 9eldprd 19363 . . . . . 6 (dom (𝑆𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
116, 7, 103syl 18 . . . . 5 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
121, 11mpbid 235 . . . 4 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
1312simprd 499 . . 3 (𝜑 → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1413adantr 484 . 2 ((𝜑𝑋 ∈ (𝐼𝐴)) → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
15 simprr 773 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1612simpld 498 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐴))
1716ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆𝐴))
186, 7syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐴) = 𝐴)
1918ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆𝐴) = 𝐴)
20 simprl 771 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
21 eqid 2734 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
229, 17, 19, 20, 21dprdff 19371 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺))
2322feqmptd 6769 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛𝐴 ↦ (𝑓𝑛)))
245ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴𝐼)
2524resmptd 5897 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
26 iftrue 4435 . . . . . . . . . 10 (𝑛𝐴 → if(𝑛𝐴, (𝑓𝑛), 0 ) = (𝑓𝑛))
2726mpteq2ia 5135 . . . . . . . . 9 (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐴 ↦ (𝑓𝑛))
2825, 27eqtrdi 2790 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ (𝑓𝑛)))
2923, 28eqtr4d 2777 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴))
3029oveq2d 7218 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)))
31 eqid 2734 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
322ad2antrr 726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
33 dprdgrp 19364 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
34 grpmnd 18344 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3532, 33, 343syl 18 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
362, 3dprddomcld 19360 . . . . . . . 8 (𝜑𝐼 ∈ V)
3736ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
38 dmdprdsplitlem.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
393ad2antrr 726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
4017adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝐺dom DProd (𝑆𝐴))
4119adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → dom (𝑆𝐴) = 𝐴)
42 simplrl 777 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
439, 40, 41, 42dprdfcl 19372 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ((𝑆𝐴)‘𝑛))
44 fvres 6725 . . . . . . . . . . . 12 (𝑛𝐴 → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4544adantl 485 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4643, 45eleqtrd 2836 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝑆𝑛))
474ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺))
4847ffvelrnda 6893 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → (𝑆𝑛) ∈ (SubGrp‘𝐺))
498subg0cl 18523 . . . . . . . . . . . 12 ((𝑆𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑛))
5048, 49syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 0 ∈ (𝑆𝑛))
5150adantr 484 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ ¬ 𝑛𝐴) → 0 ∈ (𝑆𝑛))
5246, 51ifclda 4464 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ (𝑆𝑛))
5336mptexd 7029 . . . . . . . . . . 11 (𝜑 → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
5453ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
55 funmpt 6407 . . . . . . . . . . 11 Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
5655a1i 11 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
579, 17, 19, 20dprdffsupp 19373 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
58 simpr 488 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛𝐴)
59 eldifn 4032 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6059ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6158, 60eldifd 3868 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 )))
62 ssidd 3914 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
6336, 5ssexd 5206 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ V)
6463ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V)
658fvexi 6720 . . . . . . . . . . . . . . . . 17 0 ∈ V
6665a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V)
6722, 62, 64, 66suppssr 7927 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6867adantlr 715 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6961, 68syldan 594 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → (𝑓𝑛) = 0 )
7069ifeq1da 4460 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑛𝐴, 0 , 0 ))
71 ifid 4469 . . . . . . . . . . . 12 if(𝑛𝐴, 0 , 0 ) = 0
7270, 71eqtrdi 2790 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
7372, 37suppss2 7931 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))
74 fsuppsssupp 8990 . . . . . . . . . 10 ((((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V ∧ Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7554, 56, 57, 73, 74syl22anc 839 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7638, 32, 39, 52, 75dprdwd 19370 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ 𝑊)
7738, 32, 39, 76, 21dprdff 19371 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )):𝐼⟶(Base‘𝐺))
7838, 32, 39, 76, 31dprdfcntz 19374 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ⊆ ((Cntz‘𝐺)‘ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
79 eldifn 4032 . . . . . . . . . 10 (𝑛 ∈ (𝐼𝐴) → ¬ 𝑛𝐴)
8079adantl 485 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → ¬ 𝑛𝐴)
8180iffalsed 4440 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
8281, 37suppss2 7931 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ 𝐴)
8321, 8, 31, 35, 37, 77, 78, 82, 75gsumzres 19266 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8415, 30, 833eqtrd 2778 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
85 dmdprdsplitlem.4 . . . . . . 7 (𝜑𝐹𝑊)
8685ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹𝑊)
878, 38, 32, 39, 86, 76dprdf11 19382 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ↔ 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8884, 87mpbid 235 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
8988fveq1d 6708 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋))
90 eldifi 4031 . . . . 5 (𝑋 ∈ (𝐼𝐴) → 𝑋𝐼)
9190ad2antlr 727 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋𝐼)
92 eleq1 2821 . . . . . 6 (𝑛 = 𝑋 → (𝑛𝐴𝑋𝐴))
93 fveq2 6706 . . . . . 6 (𝑛 = 𝑋 → (𝑓𝑛) = (𝑓𝑋))
9492, 93ifbieq1d 4453 . . . . 5 (𝑛 = 𝑋 → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑋𝐴, (𝑓𝑋), 0 ))
95 eqid 2734 . . . . 5 (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
96 fvex 6719 . . . . . 6 (𝑓𝑛) ∈ V
9796, 65ifex 4479 . . . . 5 if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ V
9894, 95, 97fvmpt3i 6812 . . . 4 (𝑋𝐼 → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
9991, 98syl 17 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
100 eldifn 4032 . . . . 5 (𝑋 ∈ (𝐼𝐴) → ¬ 𝑋𝐴)
101100ad2antlr 727 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋𝐴)
102101iffalsed 4440 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋𝐴, (𝑓𝑋), 0 ) = 0 )
10389, 99, 1023eqtrd 2778 . 2 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = 0 )
10414, 103rexlimddv 3203 1 ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wrex 3055  {crab 3058  Vcvv 3401  cdif 3854  wss 3857  ifcif 4429   class class class wbr 5043  cmpt 5124  dom cdm 5540  cres 5542  Fun wfun 6363  wf 6365  cfv 6369  (class class class)co 7202   supp csupp 7892  Xcixp 8567   finSupp cfsupp 8974  Basecbs 16684  0gc0g 16916   Σg cgsu 16917  Mndcmnd 18145  Grpcgrp 18337  SubGrpcsubg 18509  Cntzccntz 18681   DProd cdprd 19352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-seq 13558  df-hash 13880  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-0g 16918  df-gsum 16919  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-submnd 18191  df-grp 18340  df-minusg 18341  df-sbg 18342  df-mulg 18461  df-subg 18512  df-ghm 18592  df-gim 18635  df-cntz 18683  df-oppg 18710  df-cmn 19144  df-dprd 19354
This theorem is referenced by:  dprddisj2  19398
  Copyright terms: Public domain W3C validator