MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplitlem Structured version   Visualization version   GIF version

Theorem dmdprdsplitlem 19959
Description: Lemma for dmdprdsplit 19969. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dmdprdsplitlem.0 0 = (0g𝐺)
dmdprdsplitlem.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dmdprdsplitlem.1 (𝜑𝐺dom DProd 𝑆)
dmdprdsplitlem.2 (𝜑 → dom 𝑆 = 𝐼)
dmdprdsplitlem.3 (𝜑𝐴𝐼)
dmdprdsplitlem.4 (𝜑𝐹𝑊)
dmdprdsplitlem.5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
Assertion
Ref Expression
dmdprdsplitlem ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Distinct variable groups:   0 ,   ,𝑖,𝐴   ,𝐺,𝑖   ,𝐼,𝑖   ,𝐹   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   𝑋(,𝑖)   0 (𝑖)

Proof of Theorem dmdprdsplitlem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplitlem.5 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
2 dmdprdsplitlem.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dmdprdsplitlem.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
42, 3dprdf2 19929 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5 dmdprdsplitlem.3 . . . . . . 7 (𝜑𝐴𝐼)
64, 5fssresd 6698 . . . . . 6 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
7 fdm 6668 . . . . . 6 ((𝑆𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆𝐴) = 𝐴)
8 dmdprdsplitlem.0 . . . . . . 7 0 = (0g𝐺)
9 eqid 2733 . . . . . . 7 {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } = {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 }
108, 9eldprd 19926 . . . . . 6 (dom (𝑆𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
116, 7, 103syl 18 . . . . 5 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
121, 11mpbid 232 . . . 4 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
1312simprd 495 . . 3 (𝜑 → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1413adantr 480 . 2 ((𝜑𝑋 ∈ (𝐼𝐴)) → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
15 simprr 772 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1612simpld 494 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐴))
1716ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆𝐴))
186, 7syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐴) = 𝐴)
1918ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆𝐴) = 𝐴)
20 simprl 770 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
21 eqid 2733 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
229, 17, 19, 20, 21dprdff 19934 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺))
2322feqmptd 6899 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛𝐴 ↦ (𝑓𝑛)))
245ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴𝐼)
2524resmptd 5996 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
26 iftrue 4482 . . . . . . . . . 10 (𝑛𝐴 → if(𝑛𝐴, (𝑓𝑛), 0 ) = (𝑓𝑛))
2726mpteq2ia 5190 . . . . . . . . 9 (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐴 ↦ (𝑓𝑛))
2825, 27eqtrdi 2784 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ (𝑓𝑛)))
2923, 28eqtr4d 2771 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴))
3029oveq2d 7371 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)))
31 eqid 2733 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
322ad2antrr 726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
33 dprdgrp 19927 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
34 grpmnd 18861 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3532, 33, 343syl 18 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
362, 3dprddomcld 19923 . . . . . . . 8 (𝜑𝐼 ∈ V)
3736ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
38 dmdprdsplitlem.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
393ad2antrr 726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
4017adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝐺dom DProd (𝑆𝐴))
4119adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → dom (𝑆𝐴) = 𝐴)
42 simplrl 776 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
439, 40, 41, 42dprdfcl 19935 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ((𝑆𝐴)‘𝑛))
44 fvres 6850 . . . . . . . . . . . 12 (𝑛𝐴 → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4544adantl 481 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4643, 45eleqtrd 2835 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝑆𝑛))
474ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺))
4847ffvelcdmda 7026 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → (𝑆𝑛) ∈ (SubGrp‘𝐺))
498subg0cl 19055 . . . . . . . . . . . 12 ((𝑆𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑛))
5048, 49syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 0 ∈ (𝑆𝑛))
5150adantr 480 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ ¬ 𝑛𝐴) → 0 ∈ (𝑆𝑛))
5246, 51ifclda 4512 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ (𝑆𝑛))
5336mptexd 7167 . . . . . . . . . . 11 (𝜑 → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
5453ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
55 funmpt 6527 . . . . . . . . . . 11 Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
5655a1i 11 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
579, 17, 19, 20dprdffsupp 19936 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
58 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛𝐴)
59 eldifn 4081 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6059ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6158, 60eldifd 3909 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 )))
62 ssidd 3954 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
6336, 5ssexd 5266 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ V)
6463ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V)
658fvexi 6845 . . . . . . . . . . . . . . . . 17 0 ∈ V
6665a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V)
6722, 62, 64, 66suppssr 8134 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6867adantlr 715 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
6961, 68syldan 591 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → (𝑓𝑛) = 0 )
7069ifeq1da 4508 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑛𝐴, 0 , 0 ))
71 ifid 4517 . . . . . . . . . . . 12 if(𝑛𝐴, 0 , 0 ) = 0
7270, 71eqtrdi 2784 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
7372, 37suppss2 8139 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))
74 fsuppsssupp 9276 . . . . . . . . . 10 ((((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V ∧ Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7554, 56, 57, 73, 74syl22anc 838 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7638, 32, 39, 52, 75dprdwd 19933 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ 𝑊)
7738, 32, 39, 76, 21dprdff 19934 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )):𝐼⟶(Base‘𝐺))
7838, 32, 39, 76, 31dprdfcntz 19937 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ⊆ ((Cntz‘𝐺)‘ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
79 eldifn 4081 . . . . . . . . . 10 (𝑛 ∈ (𝐼𝐴) → ¬ 𝑛𝐴)
8079adantl 481 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → ¬ 𝑛𝐴)
8180iffalsed 4487 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
8281, 37suppss2 8139 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ 𝐴)
8321, 8, 31, 35, 37, 77, 78, 82, 75gsumzres 19829 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8415, 30, 833eqtrd 2772 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
85 dmdprdsplitlem.4 . . . . . . 7 (𝜑𝐹𝑊)
8685ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹𝑊)
878, 38, 32, 39, 86, 76dprdf11 19945 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ↔ 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8884, 87mpbid 232 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
8988fveq1d 6833 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋))
90 eldifi 4080 . . . . 5 (𝑋 ∈ (𝐼𝐴) → 𝑋𝐼)
9190ad2antlr 727 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋𝐼)
92 eleq1 2821 . . . . . 6 (𝑛 = 𝑋 → (𝑛𝐴𝑋𝐴))
93 fveq2 6831 . . . . . 6 (𝑛 = 𝑋 → (𝑓𝑛) = (𝑓𝑋))
9492, 93ifbieq1d 4501 . . . . 5 (𝑛 = 𝑋 → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑋𝐴, (𝑓𝑋), 0 ))
95 eqid 2733 . . . . 5 (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
96 fvex 6844 . . . . . 6 (𝑓𝑛) ∈ V
9796, 65ifex 4527 . . . . 5 if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ V
9894, 95, 97fvmpt3i 6943 . . . 4 (𝑋𝐼 → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
9991, 98syl 17 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
100 eldifn 4081 . . . . 5 (𝑋 ∈ (𝐼𝐴) → ¬ 𝑋𝐴)
101100ad2antlr 727 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋𝐴)
102101iffalsed 4487 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋𝐴, (𝑓𝑋), 0 ) = 0 )
10389, 99, 1023eqtrd 2772 . 2 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = 0 )
10414, 103rexlimddv 3140 1 ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  wss 3898  ifcif 4476   class class class wbr 5095  cmpt 5176  dom cdm 5621  cres 5623  Fun wfun 6483  wf 6485  cfv 6489  (class class class)co 7355   supp csupp 8099  Xcixp 8831   finSupp cfsupp 9256  Basecbs 17127  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650  Grpcgrp 18854  SubGrpcsubg 19041  Cntzccntz 19235   DProd cdprd 19915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-gim 19179  df-cntz 19237  df-oppg 19266  df-cmn 19702  df-dprd 19917
This theorem is referenced by:  dprddisj2  19961
  Copyright terms: Public domain W3C validator