Step | Hyp | Ref
| Expression |
1 | | dmdprdsplitlem.5 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴))) |
2 | | dmdprdsplitlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
3 | | dmdprdsplitlem.2 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑆 = 𝐼) |
4 | 2, 3 | dprdf2 19610 |
. . . . . . 7
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
5 | | dmdprdsplitlem.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
6 | 4, 5 | fssresd 6641 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾ 𝐴):𝐴⟶(SubGrp‘𝐺)) |
7 | | fdm 6609 |
. . . . . 6
⊢ ((𝑆 ↾ 𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆 ↾ 𝐴) = 𝐴) |
8 | | dmdprdsplitlem.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
9 | | eqid 2738 |
. . . . . . 7
⊢ {ℎ ∈ X𝑖 ∈
𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } |
10 | 8, 9 | eldprd 19607 |
. . . . . 6
⊢ (dom
(𝑆 ↾ 𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴)) ↔ (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
11 | 6, 7, 10 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴)) ↔ (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
12 | 1, 11 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) |
13 | 12 | simprd 496 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
14 | 13 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
15 | | simprr 770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
16 | 12 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
17 | 16 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
18 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑆 ↾ 𝐴) = 𝐴) |
19 | 18 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆 ↾ 𝐴) = 𝐴) |
20 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 }) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
22 | 9, 17, 19, 20, 21 | dprdff 19615 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺)) |
23 | 22 | feqmptd 6837 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛))) |
24 | 5 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ⊆ 𝐼) |
25 | 24 | resmptd 5948 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴) = (𝑛 ∈ 𝐴 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
26 | | iftrue 4465 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝐴 → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = (𝑓‘𝑛)) |
27 | 26 | mpteq2ia 5177 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐴 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛)) |
28 | 25, 27 | eqtrdi 2794 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴) = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛))) |
29 | 23, 28 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴)) |
30 | 29 | oveq2d 7291 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴))) |
31 | | eqid 2738 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
32 | 2 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆) |
33 | | dprdgrp 19608 |
. . . . . . . 8
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
34 | | grpmnd 18584 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd) |
36 | 2, 3 | dprddomcld 19604 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ V) |
37 | 36 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V) |
38 | | dmdprdsplitlem.w |
. . . . . . . 8
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
39 | 3 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼) |
40 | 17 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
41 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → dom (𝑆 ↾ 𝐴) = 𝐴) |
42 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 }) |
43 | 9, 40, 41, 42 | dprdfcl 19616 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ ((𝑆 ↾ 𝐴)‘𝑛)) |
44 | | fvres 6793 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐴 → ((𝑆 ↾ 𝐴)‘𝑛) = (𝑆‘𝑛)) |
45 | 44 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → ((𝑆 ↾ 𝐴)‘𝑛) = (𝑆‘𝑛)) |
46 | 43, 45 | eleqtrd 2841 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ (𝑆‘𝑛)) |
47 | 4 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
48 | 47 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → (𝑆‘𝑛) ∈ (SubGrp‘𝐺)) |
49 | 8 | subg0cl 18763 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑛)) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 0 ∈ (𝑆‘𝑛)) |
51 | 50 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ ¬ 𝑛 ∈ 𝐴) → 0 ∈ (𝑆‘𝑛)) |
52 | 46, 51 | ifclda 4494 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) ∈ (𝑆‘𝑛)) |
53 | 36 | mptexd 7100 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈
V) |
54 | 53 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈
V) |
55 | | funmpt 6472 |
. . . . . . . . . . 11
⊢ Fun
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) |
56 | 55 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
57 | 9, 17, 19, 20 | dprdffsupp 19617 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 ) |
58 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
59 | | eldifn 4062 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 )) |
60 | 59 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 )) |
61 | 58, 60 | eldifd 3898 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) |
62 | | ssidd 3944 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )) |
63 | 36, 5 | ssexd 5248 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ V) |
64 | 63 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V) |
65 | 8 | fvexi 6788 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
66 | 65 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V) |
67 | 22, 62, 64, 66 | suppssr 8012 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑛) = 0 ) |
68 | 67 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑛) = 0 ) |
69 | 61, 68 | syldan 591 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) = 0 ) |
70 | 69 | ifeq1da 4490 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = if(𝑛 ∈ 𝐴, 0 , 0 )) |
71 | | ifid 4499 |
. . . . . . . . . . . 12
⊢ if(𝑛 ∈ 𝐴, 0 , 0 ) = 0 |
72 | 70, 71 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = 0 ) |
73 | 72, 37 | suppss2 8016 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 )) |
74 | | fsuppsssupp 9144 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈ V ∧ Fun
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) finSupp 0
) |
75 | 54, 56, 57, 73, 74 | syl22anc 836 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) finSupp 0
) |
76 | 38, 32, 39, 52, 75 | dprdwd 19614 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈ 𝑊) |
77 | 38, 32, 39, 76, 21 | dprdff 19615 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )):𝐼⟶(Base‘𝐺)) |
78 | 38, 32, 39, 76, 31 | dprdfcntz 19618 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ⊆
((Cntz‘𝐺)‘ran
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
79 | | eldifn 4062 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝐼 ∖ 𝐴) → ¬ 𝑛 ∈ 𝐴) |
80 | 79 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ 𝐴)) → ¬ 𝑛 ∈ 𝐴) |
81 | 80 | iffalsed 4470 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ 𝐴)) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = 0 ) |
82 | 81, 37 | suppss2 8016 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ 𝐴) |
83 | 21, 8, 31, 35, 37, 77, 78, 82, 75 | gsumzres 19510 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
84 | 15, 30, 83 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
85 | | dmdprdsplitlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
86 | 85 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 ∈ 𝑊) |
87 | 8, 38, 32, 39, 86, 76 | dprdf11 19626 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) ↔ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
88 | 84, 87 | mpbid 231 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
89 | 88 | fveq1d 6776 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹‘𝑋) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋)) |
90 | | eldifi 4061 |
. . . . 5
⊢ (𝑋 ∈ (𝐼 ∖ 𝐴) → 𝑋 ∈ 𝐼) |
91 | 90 | ad2antlr 724 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋 ∈ 𝐼) |
92 | | eleq1 2826 |
. . . . . 6
⊢ (𝑛 = 𝑋 → (𝑛 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
93 | | fveq2 6774 |
. . . . . 6
⊢ (𝑛 = 𝑋 → (𝑓‘𝑛) = (𝑓‘𝑋)) |
94 | 92, 93 | ifbieq1d 4483 |
. . . . 5
⊢ (𝑛 = 𝑋 → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
95 | | eqid 2738 |
. . . . 5
⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) |
96 | | fvex 6787 |
. . . . . 6
⊢ (𝑓‘𝑛) ∈ V |
97 | 96, 65 | ifex 4509 |
. . . . 5
⊢ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) ∈
V |
98 | 94, 95, 97 | fvmpt3i 6880 |
. . . 4
⊢ (𝑋 ∈ 𝐼 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
99 | 91, 98 | syl 17 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
100 | | eldifn 4062 |
. . . . 5
⊢ (𝑋 ∈ (𝐼 ∖ 𝐴) → ¬ 𝑋 ∈ 𝐴) |
101 | 100 | ad2antlr 724 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋 ∈ 𝐴) |
102 | 101 | iffalsed 4470 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 ) = 0 ) |
103 | 89, 99, 102 | 3eqtrd 2782 |
. 2
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹‘𝑋) = 0 ) |
104 | 14, 103 | rexlimddv 3220 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → (𝐹‘𝑋) = 0 ) |