| Step | Hyp | Ref
| Expression |
| 1 | | dmdprdsplitlem.5 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴))) |
| 2 | | dmdprdsplitlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 3 | | dmdprdsplitlem.2 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | 2, 3 | dprdf2 20027 |
. . . . . . 7
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 5 | | dmdprdsplitlem.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| 6 | 4, 5 | fssresd 6775 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾ 𝐴):𝐴⟶(SubGrp‘𝐺)) |
| 7 | | fdm 6745 |
. . . . . 6
⊢ ((𝑆 ↾ 𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 8 | | dmdprdsplitlem.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
| 9 | | eqid 2737 |
. . . . . . 7
⊢ {ℎ ∈ X𝑖 ∈
𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } |
| 10 | 8, 9 | eldprd 20024 |
. . . . . 6
⊢ (dom
(𝑆 ↾ 𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴)) ↔ (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
| 11 | 6, 7, 10 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴)) ↔ (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
| 12 | 1, 11 | mpbid 232 |
. . . 4
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) |
| 13 | 12 | simprd 495 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 14 | 13 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 15 | | simprr 773 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 16 | 12 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
| 18 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 19 | 18 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 20 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 }) |
| 21 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 22 | 9, 17, 19, 20, 21 | dprdff 20032 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺)) |
| 23 | 22 | feqmptd 6977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛))) |
| 24 | 5 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ⊆ 𝐼) |
| 25 | 24 | resmptd 6058 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴) = (𝑛 ∈ 𝐴 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
| 26 | | iftrue 4531 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝐴 → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = (𝑓‘𝑛)) |
| 27 | 26 | mpteq2ia 5245 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐴 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛)) |
| 28 | 25, 27 | eqtrdi 2793 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴) = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛))) |
| 29 | 23, 28 | eqtr4d 2780 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴)) |
| 30 | 29 | oveq2d 7447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴))) |
| 31 | | eqid 2737 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 32 | 2 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆) |
| 33 | | dprdgrp 20025 |
. . . . . . . 8
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 34 | | grpmnd 18958 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 35 | 32, 33, 34 | 3syl 18 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd) |
| 36 | 2, 3 | dprddomcld 20021 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ V) |
| 37 | 36 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V) |
| 38 | | dmdprdsplitlem.w |
. . . . . . . 8
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| 39 | 3 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼) |
| 40 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
| 41 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 42 | | simplrl 777 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 }) |
| 43 | 9, 40, 41, 42 | dprdfcl 20033 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ ((𝑆 ↾ 𝐴)‘𝑛)) |
| 44 | | fvres 6925 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐴 → ((𝑆 ↾ 𝐴)‘𝑛) = (𝑆‘𝑛)) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → ((𝑆 ↾ 𝐴)‘𝑛) = (𝑆‘𝑛)) |
| 46 | 43, 45 | eleqtrd 2843 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ (𝑆‘𝑛)) |
| 47 | 4 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 48 | 47 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → (𝑆‘𝑛) ∈ (SubGrp‘𝐺)) |
| 49 | 8 | subg0cl 19152 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑛)) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 0 ∈ (𝑆‘𝑛)) |
| 51 | 50 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ ¬ 𝑛 ∈ 𝐴) → 0 ∈ (𝑆‘𝑛)) |
| 52 | 46, 51 | ifclda 4561 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) ∈ (𝑆‘𝑛)) |
| 53 | 36 | mptexd 7244 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈
V) |
| 54 | 53 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈
V) |
| 55 | | funmpt 6604 |
. . . . . . . . . . 11
⊢ Fun
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) |
| 56 | 55 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
| 57 | 9, 17, 19, 20 | dprdffsupp 20034 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 ) |
| 58 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
| 59 | | eldifn 4132 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 )) |
| 60 | 59 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 )) |
| 61 | 58, 60 | eldifd 3962 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) |
| 62 | | ssidd 4007 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )) |
| 63 | 36, 5 | ssexd 5324 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ V) |
| 64 | 63 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V) |
| 65 | 8 | fvexi 6920 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 66 | 65 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V) |
| 67 | 22, 62, 64, 66 | suppssr 8220 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑛) = 0 ) |
| 68 | 67 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑛) = 0 ) |
| 69 | 61, 68 | syldan 591 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) = 0 ) |
| 70 | 69 | ifeq1da 4557 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = if(𝑛 ∈ 𝐴, 0 , 0 )) |
| 71 | | ifid 4566 |
. . . . . . . . . . . 12
⊢ if(𝑛 ∈ 𝐴, 0 , 0 ) = 0 |
| 72 | 70, 71 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = 0 ) |
| 73 | 72, 37 | suppss2 8225 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 )) |
| 74 | | fsuppsssupp 9421 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈ V ∧ Fun
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) finSupp 0
) |
| 75 | 54, 56, 57, 73, 74 | syl22anc 839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) finSupp 0
) |
| 76 | 38, 32, 39, 52, 75 | dprdwd 20031 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈ 𝑊) |
| 77 | 38, 32, 39, 76, 21 | dprdff 20032 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )):𝐼⟶(Base‘𝐺)) |
| 78 | 38, 32, 39, 76, 31 | dprdfcntz 20035 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ⊆
((Cntz‘𝐺)‘ran
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 79 | | eldifn 4132 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝐼 ∖ 𝐴) → ¬ 𝑛 ∈ 𝐴) |
| 80 | 79 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ 𝐴)) → ¬ 𝑛 ∈ 𝐴) |
| 81 | 80 | iffalsed 4536 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ 𝐴)) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = 0 ) |
| 82 | 81, 37 | suppss2 8225 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ 𝐴) |
| 83 | 21, 8, 31, 35, 37, 77, 78, 82, 75 | gsumzres 19927 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 84 | 15, 30, 83 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 85 | | dmdprdsplitlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 86 | 85 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 ∈ 𝑊) |
| 87 | 8, 38, 32, 39, 86, 76 | dprdf11 20043 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) ↔ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 88 | 84, 87 | mpbid 232 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
| 89 | 88 | fveq1d 6908 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹‘𝑋) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋)) |
| 90 | | eldifi 4131 |
. . . . 5
⊢ (𝑋 ∈ (𝐼 ∖ 𝐴) → 𝑋 ∈ 𝐼) |
| 91 | 90 | ad2antlr 727 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋 ∈ 𝐼) |
| 92 | | eleq1 2829 |
. . . . . 6
⊢ (𝑛 = 𝑋 → (𝑛 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
| 93 | | fveq2 6906 |
. . . . . 6
⊢ (𝑛 = 𝑋 → (𝑓‘𝑛) = (𝑓‘𝑋)) |
| 94 | 92, 93 | ifbieq1d 4550 |
. . . . 5
⊢ (𝑛 = 𝑋 → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
| 95 | | eqid 2737 |
. . . . 5
⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) |
| 96 | | fvex 6919 |
. . . . . 6
⊢ (𝑓‘𝑛) ∈ V |
| 97 | 96, 65 | ifex 4576 |
. . . . 5
⊢ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) ∈
V |
| 98 | 94, 95, 97 | fvmpt3i 7021 |
. . . 4
⊢ (𝑋 ∈ 𝐼 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
| 99 | 91, 98 | syl 17 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
| 100 | | eldifn 4132 |
. . . . 5
⊢ (𝑋 ∈ (𝐼 ∖ 𝐴) → ¬ 𝑋 ∈ 𝐴) |
| 101 | 100 | ad2antlr 727 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋 ∈ 𝐴) |
| 102 | 101 | iffalsed 4536 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 ) = 0 ) |
| 103 | 89, 99, 102 | 3eqtrd 2781 |
. 2
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹‘𝑋) = 0 ) |
| 104 | 14, 103 | rexlimddv 3161 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → (𝐹‘𝑋) = 0 ) |