Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrmineq | Structured version Visualization version GIF version |
Description: The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
xrmineq | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletri3 12744 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
2 | 1 | ancoms 462 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
3 | 2 | biimpar 481 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐵 = 𝐴) |
4 | 3 | anassrs 471 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐵 ≤ 𝐴) ∧ 𝐴 ≤ 𝐵) → 𝐵 = 𝐴) |
5 | 4 | ifeq1da 4470 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐵) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
6 | 5 | 3impa 1112 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐵) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
7 | ifid 4479 | . 2 ⊢ if(𝐴 ≤ 𝐵, 𝐵, 𝐵) = 𝐵 | |
8 | 6, 7 | eqtr3di 2793 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ifcif 4439 class class class wbr 5053 ℝ*cxr 10866 ≤ cle 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 |
This theorem is referenced by: ssfzunsn 13158 setsstruct 16729 ioondisj2 42706 |
Copyright terms: Public domain | W3C validator |