MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsmod Structured version   Visualization version   GIF version

Theorem lgsmod 26011
Description: The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))

Proof of Theorem lgsmod
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zmodcl 13313 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ ℕ0)
213adant3 1129 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℕ0)
32nn0zd 12129 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
43ad2antrr 725 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5 simpr 488 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
65adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℙ)
7 simpl3 1190 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ¬ 2 ∥ 𝑁)
8 breq1 5038 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 2 → (𝑛𝑁 ↔ 2 ∥ 𝑁))
98notbid 321 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 2 → (¬ 𝑛𝑁 ↔ ¬ 2 ∥ 𝑁))
107, 9syl5ibrcom 250 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛 = 2 → ¬ 𝑛𝑁))
1110necon2ad 2966 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛𝑁𝑛 ≠ 2))
1211imp 410 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ≠ 2)
13 eldifsn 4680 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
146, 12, 13sylanbrc 586 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ (ℙ ∖ {2}))
15 oddprm 16207 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℙ ∖ {2}) → ((𝑛 − 1) / 2) ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ)
1716nnnn0d 11999 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ0)
18 zexpcl 13499 . . . . . . . . . . . . 13 (((𝐴 mod 𝑁) ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
194, 17, 18syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
2019zred 12131 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ)
21 simpll1 1209 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℤ)
22 zexpcl 13499 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2321, 17, 22syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2423zred 12131 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ)
25 1red 10685 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 1 ∈ ℝ)
26 prmnn 16075 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
2726ad2antlr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℕ)
2827nnrpd 12475 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℝ+)
29 prmz 16076 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℙ → 𝑛 ∈ ℤ)
3029ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℤ)
31 simp2 1134 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
3231ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℕ)
3332nnzd 12130 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℤ)
344, 21zsubcld 12136 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) − 𝐴) ∈ ℤ)
35 simpr 488 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛𝑁)
3621zred 12131 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℝ)
3732nnrpd 12475 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℝ+)
38 modabs2 13327 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
3936, 37, 38syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
40 moddvds 15671 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4132, 4, 21, 40syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4239, 41mpbid 235 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴))
4330, 33, 34, 35, 42dvdstrd 15701 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴))
44 moddvds 15671 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4527, 4, 21, 44syl3anc 1368 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4643, 45mpbird 260 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛))
47 modexp 13654 . . . . . . . . . . . 12 ((((𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (((𝑛 − 1) / 2) ∈ ℕ0𝑛 ∈ ℝ+) ∧ ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛)) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
484, 21, 17, 28, 46, 47syl221anc 1378 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
49 modadd1 13330 . . . . . . . . . . 11 (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ ∧ (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑛 ∈ ℝ+) ∧ (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛)) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5020, 24, 25, 28, 48, 49syl221anc 1378 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5150oveq1d 7170 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
52 lgsval3 26003 . . . . . . . . . 10 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
534, 14, 52syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
54 lgsval3 26003 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5521, 14, 54syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5651, 53, 553eqtr4d 2803 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (𝐴 /L 𝑛))
5756oveq1d 7170 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
583ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5929ad2antlr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝑛 ∈ ℤ)
60 lgscl 25999 . . . . . . . . . . . 12 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6158, 59, 60syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6261zcnd 12132 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℂ)
6362exp0d 13559 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = 1)
64 simpll1 1209 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝐴 ∈ ℤ)
65 lgscl 25999 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝐴 /L 𝑛) ∈ ℤ)
6664, 59, 65syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℤ)
6766zcnd 12132 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℂ)
6867exp0d 13559 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑0) = 1)
6963, 68eqtr4d 2796 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = ((𝐴 /L 𝑛)↑0))
7031adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℕ)
71 pceq0 16267 . . . . . . . . . . 11 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
725, 70, 71syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
7372biimpar 481 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝑛 pCnt 𝑁) = 0)
7473oveq2d 7171 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 mod 𝑁) /L 𝑛)↑0))
7573oveq2d 7171 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑0))
7669, 74, 753eqtr4d 2803 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7757, 76pm2.61dan 812 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7877ifeq1da 4454 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
7978mpteq2dv 5131 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
8079seqeq3d 13431 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))))
8180fveq1d 6664 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
82 eqid 2758 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8382lgsval4a 26007 . . 3 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
843, 31, 83syl2anc 587 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
85 eqid 2758 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8685lgsval4a 26007 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
87863adant3 1129 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
8881, 84, 873eqtr4d 2803 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  cdif 3857  ifcif 4423  {csn 4525   class class class wbr 5035  cmpt 5115  cfv 6339  (class class class)co 7155  cr 10579  0cc0 10580  1c1 10581   + caddc 10583   · cmul 10585  cmin 10913   / cdiv 11340  cn 11679  2c2 11734  0cn0 11939  cz 12025  +crp 12435   mod cmo 13291  seqcseq 13423  cexp 13484  cdvds 15660  cprime 16072   pCnt cpc 16233   /L clgs 25982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-oadd 8121  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-dju 9368  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-xnn0 12012  df-z 12026  df-uz 12288  df-q 12394  df-rp 12436  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-dvds 15661  df-gcd 15899  df-prm 16073  df-phi 16163  df-pc 16234  df-lgs 25983
This theorem is referenced by:  lgsmodeq  26030  lgsqr  26039  lgsdchrval  26042
  Copyright terms: Public domain W3C validator