MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsmod Structured version   Visualization version   GIF version

Theorem lgsmod 27234
Description: The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))

Proof of Theorem lgsmod
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zmodcl 13853 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ ℕ0)
213adant3 1132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℕ0)
32nn0zd 12555 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
43ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
65adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℙ)
7 simpl3 1194 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ¬ 2 ∥ 𝑁)
8 breq1 5110 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 2 → (𝑛𝑁 ↔ 2 ∥ 𝑁))
98notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 2 → (¬ 𝑛𝑁 ↔ ¬ 2 ∥ 𝑁))
107, 9syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛 = 2 → ¬ 𝑛𝑁))
1110necon2ad 2940 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛𝑁𝑛 ≠ 2))
1211imp 406 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ≠ 2)
13 eldifsn 4750 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
146, 12, 13sylanbrc 583 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ (ℙ ∖ {2}))
15 oddprm 16781 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℙ ∖ {2}) → ((𝑛 − 1) / 2) ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ)
1716nnnn0d 12503 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ0)
18 zexpcl 14041 . . . . . . . . . . . . 13 (((𝐴 mod 𝑁) ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
194, 17, 18syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
2019zred 12638 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ)
21 simpll1 1213 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℤ)
22 zexpcl 14041 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2321, 17, 22syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2423zred 12638 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ)
25 1red 11175 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 1 ∈ ℝ)
26 prmnn 16644 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
2726ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℕ)
2827nnrpd 12993 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℝ+)
29 prmz 16645 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℙ → 𝑛 ∈ ℤ)
3029ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℤ)
31 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
3231ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℕ)
3332nnzd 12556 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℤ)
344, 21zsubcld 12643 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) − 𝐴) ∈ ℤ)
35 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛𝑁)
3621zred 12638 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℝ)
3732nnrpd 12993 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℝ+)
38 modabs2 13867 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
40 moddvds 16233 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4132, 4, 21, 40syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4239, 41mpbid 232 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴))
4330, 33, 34, 35, 42dvdstrd 16265 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴))
44 moddvds 16233 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4527, 4, 21, 44syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4643, 45mpbird 257 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛))
47 modexp 14203 . . . . . . . . . . . 12 ((((𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (((𝑛 − 1) / 2) ∈ ℕ0𝑛 ∈ ℝ+) ∧ ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛)) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
484, 21, 17, 28, 46, 47syl221anc 1383 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
49 modadd1 13870 . . . . . . . . . . 11 (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ ∧ (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑛 ∈ ℝ+) ∧ (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛)) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5020, 24, 25, 28, 48, 49syl221anc 1383 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5150oveq1d 7402 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
52 lgsval3 27226 . . . . . . . . . 10 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
534, 14, 52syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
54 lgsval3 27226 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5521, 14, 54syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5651, 53, 553eqtr4d 2774 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (𝐴 /L 𝑛))
5756oveq1d 7402 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
583ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5929ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝑛 ∈ ℤ)
60 lgscl 27222 . . . . . . . . . . . 12 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6158, 59, 60syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6261zcnd 12639 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℂ)
6362exp0d 14105 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = 1)
64 simpll1 1213 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝐴 ∈ ℤ)
65 lgscl 27222 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝐴 /L 𝑛) ∈ ℤ)
6664, 59, 65syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℤ)
6766zcnd 12639 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℂ)
6867exp0d 14105 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑0) = 1)
6963, 68eqtr4d 2767 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = ((𝐴 /L 𝑛)↑0))
7031adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℕ)
71 pceq0 16842 . . . . . . . . . . 11 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
725, 70, 71syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
7372biimpar 477 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝑛 pCnt 𝑁) = 0)
7473oveq2d 7403 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 mod 𝑁) /L 𝑛)↑0))
7573oveq2d 7403 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑0))
7669, 74, 753eqtr4d 2774 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7757, 76pm2.61dan 812 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7877ifeq1da 4520 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
7978mpteq2dv 5201 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
8079seqeq3d 13974 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))))
8180fveq1d 6860 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
82 eqid 2729 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8382lgsval4a 27230 . . 3 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
843, 31, 83syl2anc 584 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
85 eqid 2729 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8685lgsval4a 27230 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
87863adant3 1132 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
8881, 84, 873eqtr4d 2774 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  ifcif 4488  {csn 4589   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  +crp 12951   mod cmo 13831  seqcseq 13966  cexp 14026  cdvds 16222  cprime 16641   pCnt cpc 16807   /L clgs 27205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-pc 16808  df-lgs 27206
This theorem is referenced by:  lgsmodeq  27253  lgsqr  27262  lgsdchrval  27265
  Copyright terms: Public domain W3C validator