MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsmod Structured version   Visualization version   GIF version

Theorem lgsmod 27385
Description: The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))

Proof of Theorem lgsmod
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zmodcl 13942 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ ℕ0)
213adant3 1132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℕ0)
32nn0zd 12665 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
43ad2antrr 725 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
65adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℙ)
7 simpl3 1193 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ¬ 2 ∥ 𝑁)
8 breq1 5169 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 2 → (𝑛𝑁 ↔ 2 ∥ 𝑁))
98notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 2 → (¬ 𝑛𝑁 ↔ ¬ 2 ∥ 𝑁))
107, 9syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛 = 2 → ¬ 𝑛𝑁))
1110necon2ad 2961 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛𝑁𝑛 ≠ 2))
1211imp 406 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ≠ 2)
13 eldifsn 4811 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
146, 12, 13sylanbrc 582 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ (ℙ ∖ {2}))
15 oddprm 16857 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℙ ∖ {2}) → ((𝑛 − 1) / 2) ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ)
1716nnnn0d 12613 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ0)
18 zexpcl 14127 . . . . . . . . . . . . 13 (((𝐴 mod 𝑁) ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
194, 17, 18syl2anc 583 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
2019zred 12747 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ)
21 simpll1 1212 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℤ)
22 zexpcl 14127 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2321, 17, 22syl2anc 583 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2423zred 12747 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ)
25 1red 11291 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 1 ∈ ℝ)
26 prmnn 16721 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
2726ad2antlr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℕ)
2827nnrpd 13097 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℝ+)
29 prmz 16722 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℙ → 𝑛 ∈ ℤ)
3029ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℤ)
31 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
3231ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℕ)
3332nnzd 12666 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℤ)
344, 21zsubcld 12752 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) − 𝐴) ∈ ℤ)
35 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛𝑁)
3621zred 12747 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℝ)
3732nnrpd 13097 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℝ+)
38 modabs2 13956 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
3936, 37, 38syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
40 moddvds 16313 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4132, 4, 21, 40syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4239, 41mpbid 232 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴))
4330, 33, 34, 35, 42dvdstrd 16343 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴))
44 moddvds 16313 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4527, 4, 21, 44syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4643, 45mpbird 257 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛))
47 modexp 14287 . . . . . . . . . . . 12 ((((𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (((𝑛 − 1) / 2) ∈ ℕ0𝑛 ∈ ℝ+) ∧ ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛)) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
484, 21, 17, 28, 46, 47syl221anc 1381 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
49 modadd1 13959 . . . . . . . . . . 11 (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ ∧ (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑛 ∈ ℝ+) ∧ (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛)) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5020, 24, 25, 28, 48, 49syl221anc 1381 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5150oveq1d 7463 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
52 lgsval3 27377 . . . . . . . . . 10 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
534, 14, 52syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
54 lgsval3 27377 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5521, 14, 54syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5651, 53, 553eqtr4d 2790 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (𝐴 /L 𝑛))
5756oveq1d 7463 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
583ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5929ad2antlr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝑛 ∈ ℤ)
60 lgscl 27373 . . . . . . . . . . . 12 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6158, 59, 60syl2anc 583 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6261zcnd 12748 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℂ)
6362exp0d 14190 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = 1)
64 simpll1 1212 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝐴 ∈ ℤ)
65 lgscl 27373 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝐴 /L 𝑛) ∈ ℤ)
6664, 59, 65syl2anc 583 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℤ)
6766zcnd 12748 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℂ)
6867exp0d 14190 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑0) = 1)
6963, 68eqtr4d 2783 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = ((𝐴 /L 𝑛)↑0))
7031adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℕ)
71 pceq0 16918 . . . . . . . . . . 11 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
725, 70, 71syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
7372biimpar 477 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝑛 pCnt 𝑁) = 0)
7473oveq2d 7464 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 mod 𝑁) /L 𝑛)↑0))
7573oveq2d 7464 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑0))
7669, 74, 753eqtr4d 2790 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7757, 76pm2.61dan 812 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7877ifeq1da 4579 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
7978mpteq2dv 5268 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
8079seqeq3d 14060 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))))
8180fveq1d 6922 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
82 eqid 2740 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8382lgsval4a 27381 . . 3 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
843, 31, 83syl2anc 583 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
85 eqid 2740 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8685lgsval4a 27381 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
87863adant3 1132 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
8881, 84, 873eqtr4d 2790 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057   mod cmo 13920  seqcseq 14052  cexp 14112  cdvds 16302  cprime 16718   pCnt cpc 16883   /L clgs 27356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-pc 16884  df-lgs 27357
This theorem is referenced by:  lgsmodeq  27404  lgsqr  27413  lgsdchrval  27416
  Copyright terms: Public domain W3C validator