![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumser | Structured version Visualization version GIF version |
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 15729 and fsump1i 15751, which should make our notation clear and from which, along with closure fsumcl 15715, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 21-Apr-2014.) |
Ref | Expression |
---|---|
fsumser.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) |
fsumser.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumser.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
fsumser | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2808 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁))) | |
2 | fveq2 6896 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
3 | 1, 2 | ifbieq1d 4554 | . . . . 5 ⊢ (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
4 | eqid 2725 | . . . . 5 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) | |
5 | fvex 6909 | . . . . . 6 ⊢ (𝐹‘𝑘) ∈ V | |
6 | c0ex 11240 | . . . . . 6 ⊢ 0 ∈ V | |
7 | 5, 6 | ifex 4580 | . . . . 5 ⊢ if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) ∈ V |
8 | 3, 4, 7 | fvmpt 7004 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
9 | fsumser.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) | |
10 | 9 | ifeq1da 4561 | . . . 4 ⊢ (𝜑 → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
11 | 8, 10 | sylan9eqr 2787 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
12 | fsumser.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
13 | fsumser.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
14 | ssidd 4000 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁)) | |
15 | 11, 12, 13, 14 | fsumsers 15710 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁)) |
16 | elfzuz 13532 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
17 | 16, 8 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
18 | iftrue 4536 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) | |
19 | 17, 18 | eqtrd 2765 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
20 | 19 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
21 | 12, 20 | seqfveq 14027 | . 2 ⊢ (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
22 | 15, 21 | eqtrd 2765 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4530 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 0cc0 11140 + caddc 11143 ℤ≥cuz 12855 ...cfz 13519 seqcseq 14002 Σcsu 15668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 |
This theorem is referenced by: isumclim3 15741 seqabs 15796 cvgcmpce 15800 isumsplit 15822 climcndslem1 15831 climcndslem2 15832 climcnds 15833 trireciplem 15844 geolim 15852 geo2lim 15857 mertenslem2 15867 mertens 15868 efcvgfsum 16066 effsumlt 16091 prmreclem6 16893 prmrec 16894 ovollb2lem 25461 ovoliunlem1 25475 ovoliun2 25479 ovolscalem1 25486 ovolicc2lem4 25493 uniioovol 25552 uniioombllem3 25558 uniioombllem6 25561 mtest 26385 mtestbdd 26386 psercn2 26404 psercn2OLD 26405 pserdvlem2 26410 abelthlem6 26418 logfac 26580 emcllem5 26977 lgamcvg2 27032 basellem8 27065 prmorcht 27155 pclogsum 27193 dchrisumlem2 27468 dchrmusum2 27472 dchrvmasumiflem1 27479 dchrisum0re 27491 dchrisum0lem1b 27493 dchrisum0lem2a 27495 dchrisum0lem2 27496 esumpcvgval 33828 esumcvg 33836 esumcvgsum 33838 knoppcnlem11 36109 fsumsermpt 45105 sumnnodd 45156 fourierdlem112 45744 sge0isum 45953 sge0seq 45972 |
Copyright terms: Public domain | W3C validator |