![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumser | Structured version Visualization version GIF version |
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 15632 and fsump1i 15654, which should make our notation clear and from which, along with closure fsumcl 15618, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 21-Apr-2014.) |
Ref | Expression |
---|---|
fsumser.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) |
fsumser.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumser.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
fsumser | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2820 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁))) | |
2 | fveq2 6842 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
3 | 1, 2 | ifbieq1d 4510 | . . . . 5 ⊢ (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
4 | eqid 2736 | . . . . 5 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) | |
5 | fvex 6855 | . . . . . 6 ⊢ (𝐹‘𝑘) ∈ V | |
6 | c0ex 11149 | . . . . . 6 ⊢ 0 ∈ V | |
7 | 5, 6 | ifex 4536 | . . . . 5 ⊢ if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) ∈ V |
8 | 3, 4, 7 | fvmpt 6948 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
9 | fsumser.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) | |
10 | 9 | ifeq1da 4517 | . . . 4 ⊢ (𝜑 → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
11 | 8, 10 | sylan9eqr 2798 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
12 | fsumser.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
13 | fsumser.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
14 | ssidd 3967 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁)) | |
15 | 11, 12, 13, 14 | fsumsers 15613 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁)) |
16 | elfzuz 13437 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
17 | 16, 8 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
18 | iftrue 4492 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) | |
19 | 17, 18 | eqtrd 2776 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
20 | 19 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
21 | 12, 20 | seqfveq 13932 | . 2 ⊢ (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
22 | 15, 21 | eqtrd 2776 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4486 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 + caddc 11054 ℤ≥cuz 12763 ...cfz 13424 seqcseq 13906 Σcsu 15570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 |
This theorem is referenced by: isumclim3 15644 seqabs 15699 cvgcmpce 15703 isumsplit 15725 climcndslem1 15734 climcndslem2 15735 climcnds 15736 trireciplem 15747 geolim 15755 geo2lim 15760 mertenslem2 15770 mertens 15771 efcvgfsum 15968 effsumlt 15993 prmreclem6 16793 prmrec 16794 ovollb2lem 24852 ovoliunlem1 24866 ovoliun2 24870 ovolscalem1 24877 ovolicc2lem4 24884 uniioovol 24943 uniioombllem3 24949 uniioombllem6 24952 mtest 25763 mtestbdd 25764 psercn2 25782 pserdvlem2 25787 abelthlem6 25795 logfac 25956 emcllem5 26349 lgamcvg2 26404 basellem8 26437 prmorcht 26527 pclogsum 26563 dchrisumlem2 26838 dchrmusum2 26842 dchrvmasumiflem1 26849 dchrisum0re 26861 dchrisum0lem1b 26863 dchrisum0lem2a 26865 dchrisum0lem2 26866 esumpcvgval 32677 esumcvg 32685 esumcvgsum 32687 knoppcnlem11 34966 fsumsermpt 43810 sumnnodd 43861 fourierdlem112 44449 sge0isum 44658 sge0seq 44677 |
Copyright terms: Public domain | W3C validator |