MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumser Structured version   Visualization version   GIF version

Theorem fsumser 15682
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 15699 and fsump1i 15721, which should make our notation clear and from which, along with closure fsumcl 15685, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
fsumser.1 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
fsumser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumser.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsumser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsumser
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2810 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
2 fveq2 6885 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
31, 2ifbieq1d 4547 . . . . 5 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
4 eqid 2726 . . . . 5 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
5 fvex 6898 . . . . . 6 (𝐹𝑘) ∈ V
6 c0ex 11212 . . . . . 6 0 ∈ V
75, 6ifex 4573 . . . . 5 if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ V
83, 4, 7fvmpt 6992 . . . 4 (𝑘 ∈ (ℤ𝑀) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
9 fsumser.1 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
109ifeq1da 4554 . . . 4 (𝜑 → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
118, 10sylan9eqr 2788 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
12 fsumser.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
13 fsumser.3 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
14 ssidd 4000 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
1511, 12, 13, 14fsumsers 15680 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁))
16 elfzuz 13503 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
1716, 8syl 17 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
18 iftrue 4529 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
1917, 18eqtrd 2766 . . . 4 (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
2019adantl 481 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
2112, 20seqfveq 13997 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
2215, 21eqtrd 2766 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  ifcif 4523  cmpt 5224  cfv 6537  (class class class)co 7405  cc 11110  0cc0 11112   + caddc 11115  cuz 12826  ...cfz 13490  seqcseq 13972  Σcsu 15638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639
This theorem is referenced by:  isumclim3  15711  seqabs  15766  cvgcmpce  15770  isumsplit  15792  climcndslem1  15801  climcndslem2  15802  climcnds  15803  trireciplem  15814  geolim  15822  geo2lim  15827  mertenslem2  15837  mertens  15838  efcvgfsum  16036  effsumlt  16061  prmreclem6  16863  prmrec  16864  ovollb2lem  25372  ovoliunlem1  25386  ovoliun2  25390  ovolscalem1  25397  ovolicc2lem4  25404  uniioovol  25463  uniioombllem3  25469  uniioombllem6  25472  mtest  26295  mtestbdd  26296  psercn2  26314  psercn2OLD  26315  pserdvlem2  26320  abelthlem6  26328  logfac  26490  emcllem5  26887  lgamcvg2  26942  basellem8  26975  prmorcht  27065  pclogsum  27103  dchrisumlem2  27378  dchrmusum2  27382  dchrvmasumiflem1  27389  dchrisum0re  27401  dchrisum0lem1b  27403  dchrisum0lem2a  27405  dchrisum0lem2  27406  esumpcvgval  33606  esumcvg  33614  esumcvgsum  33616  knoppcnlem11  35887  fsumsermpt  44864  sumnnodd  44915  fourierdlem112  45503  sge0isum  45712  sge0seq  45731
  Copyright terms: Public domain W3C validator