MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumser Structured version   Visualization version   GIF version

Theorem fsumser 15546
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 15563 and fsump1i 15585, which should make our notation clear and from which, along with closure fsumcl 15549, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
fsumser.1 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
fsumser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumser.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsumser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsumser
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2820 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
2 fveq2 6834 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
31, 2ifbieq1d 4505 . . . . 5 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
4 eqid 2737 . . . . 5 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
5 fvex 6847 . . . . . 6 (𝐹𝑘) ∈ V
6 c0ex 11079 . . . . . 6 0 ∈ V
75, 6ifex 4531 . . . . 5 if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ V
83, 4, 7fvmpt 6940 . . . 4 (𝑘 ∈ (ℤ𝑀) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
9 fsumser.1 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
109ifeq1da 4512 . . . 4 (𝜑 → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
118, 10sylan9eqr 2799 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
12 fsumser.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
13 fsumser.3 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
14 ssidd 3962 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
1511, 12, 13, 14fsumsers 15544 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁))
16 elfzuz 13362 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
1716, 8syl 17 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
18 iftrue 4487 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
1917, 18eqtrd 2777 . . . 4 (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
2019adantl 483 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
2112, 20seqfveq 13857 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
2215, 21eqtrd 2777 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  ifcif 4481  cmpt 5183  cfv 6488  (class class class)co 7346  cc 10979  0cc0 10981   + caddc 10984  cuz 12692  ...cfz 13349  seqcseq 13831  Σcsu 15501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-sup 9308  df-oi 9376  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-z 12430  df-uz 12693  df-rp 12841  df-fz 13350  df-fzo 13493  df-seq 13832  df-exp 13893  df-hash 14155  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-clim 15301  df-sum 15502
This theorem is referenced by:  isumclim3  15575  seqabs  15630  cvgcmpce  15634  isumsplit  15656  climcndslem1  15665  climcndslem2  15666  climcnds  15667  trireciplem  15678  geolim  15686  geo2lim  15691  mertenslem2  15701  mertens  15702  efcvgfsum  15899  effsumlt  15924  prmreclem6  16724  prmrec  16725  ovollb2lem  24762  ovoliunlem1  24776  ovoliun2  24780  ovolscalem1  24787  ovolicc2lem4  24794  uniioovol  24853  uniioombllem3  24859  uniioombllem6  24862  mtest  25673  mtestbdd  25674  psercn2  25692  pserdvlem2  25697  abelthlem6  25705  logfac  25866  emcllem5  26259  lgamcvg2  26314  basellem8  26347  prmorcht  26437  pclogsum  26473  dchrisumlem2  26748  dchrmusum2  26752  dchrvmasumiflem1  26759  dchrisum0re  26771  dchrisum0lem1b  26773  dchrisum0lem2a  26775  dchrisum0lem2  26776  esumpcvgval  32408  esumcvg  32416  esumcvgsum  32418  knoppcnlem11  34822  fsumsermpt  43508  sumnnodd  43559  fourierdlem112  44147  sge0isum  44354  sge0seq  44373
  Copyright terms: Public domain W3C validator