MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumser Structured version   Visualization version   GIF version

Theorem fsumser 15079
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 15094 and fsump1i 15116, which should make our notation clear and from which, along with closure fsumcl 15082, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
fsumser.1 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
fsumser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumser.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsumser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsumser
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2872 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
2 fveq2 6645 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
31, 2ifbieq1d 4448 . . . . 5 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
4 eqid 2798 . . . . 5 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
5 fvex 6658 . . . . . 6 (𝐹𝑘) ∈ V
6 c0ex 10624 . . . . . 6 0 ∈ V
75, 6ifex 4473 . . . . 5 if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ V
83, 4, 7fvmpt 6745 . . . 4 (𝑘 ∈ (ℤ𝑀) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
9 fsumser.1 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
109ifeq1da 4455 . . . 4 (𝜑 → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
118, 10sylan9eqr 2855 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
12 fsumser.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
13 fsumser.3 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
14 ssidd 3938 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
1511, 12, 13, 14fsumsers 15077 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁))
16 elfzuz 12898 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
1716, 8syl 17 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
18 iftrue 4431 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
1917, 18eqtrd 2833 . . . 4 (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
2019adantl 485 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
2112, 20seqfveq 13390 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
2215, 21eqtrd 2833 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  ifcif 4425  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   + caddc 10529  cuz 12231  ...cfz 12885  seqcseq 13364  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  isumclim3  15106  seqabs  15161  cvgcmpce  15165  isumsplit  15187  climcndslem1  15196  climcndslem2  15197  climcnds  15198  trireciplem  15209  geolim  15218  geo2lim  15223  mertenslem2  15233  mertens  15234  efcvgfsum  15431  effsumlt  15456  prmreclem6  16247  prmrec  16248  ovollb2lem  24092  ovoliunlem1  24106  ovoliun2  24110  ovolscalem1  24117  ovolicc2lem4  24124  uniioovol  24183  uniioombllem3  24189  uniioombllem6  24192  mtest  24999  mtestbdd  25000  psercn2  25018  pserdvlem2  25023  abelthlem6  25031  logfac  25192  emcllem5  25585  lgamcvg2  25640  basellem8  25673  prmorcht  25763  pclogsum  25799  dchrisumlem2  26074  dchrmusum2  26078  dchrvmasumiflem1  26085  dchrisum0re  26097  dchrisum0lem1b  26099  dchrisum0lem2a  26101  dchrisum0lem2  26102  esumpcvgval  31447  esumcvg  31455  esumcvgsum  31457  knoppcnlem11  33955  fsumsermpt  42221  sumnnodd  42272  fourierdlem112  42860  sge0isum  43066  sge0seq  43085
  Copyright terms: Public domain W3C validator