| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumser | Structured version Visualization version GIF version | ||
| Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 15654 and fsump1i 15676, which should make our notation clear and from which, along with closure fsumcl 15640, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 21-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumser.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) |
| fsumser.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| fsumser.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fsumser | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2814 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁))) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
| 3 | 1, 2 | ifbieq1d 4497 | . . . . 5 ⊢ (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
| 4 | eqid 2731 | . . . . 5 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) | |
| 5 | fvex 6835 | . . . . . 6 ⊢ (𝐹‘𝑘) ∈ V | |
| 6 | c0ex 11106 | . . . . . 6 ⊢ 0 ∈ V | |
| 7 | 5, 6 | ifex 4523 | . . . . 5 ⊢ if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) ∈ V |
| 8 | 3, 4, 7 | fvmpt 6929 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
| 9 | fsumser.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) | |
| 10 | 9 | ifeq1da 4504 | . . . 4 ⊢ (𝜑 → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
| 11 | 8, 10 | sylan9eqr 2788 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
| 12 | fsumser.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 13 | fsumser.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 14 | ssidd 3953 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁)) | |
| 15 | 11, 12, 13, 14 | fsumsers 15635 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁)) |
| 16 | elfzuz 13420 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 17 | 16, 8 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
| 18 | iftrue 4478 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) | |
| 19 | 17, 18 | eqtrd 2766 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
| 21 | 12, 20 | seqfveq 13933 | . 2 ⊢ (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 22 | 15, 21 | eqtrd 2766 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4472 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 + caddc 11009 ℤ≥cuz 12732 ...cfz 13407 seqcseq 13908 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: isumclim3 15666 seqabs 15721 cvgcmpce 15725 isumsplit 15747 climcndslem1 15756 climcndslem2 15757 climcnds 15758 trireciplem 15769 geolim 15777 geo2lim 15782 mertenslem2 15792 mertens 15793 efcvgfsum 15993 effsumlt 16020 prmreclem6 16833 prmrec 16834 ovollb2lem 25416 ovoliunlem1 25430 ovoliun2 25434 ovolscalem1 25441 ovolicc2lem4 25448 uniioovol 25507 uniioombllem3 25513 uniioombllem6 25516 mtest 26340 mtestbdd 26341 psercn2 26359 psercn2OLD 26360 pserdvlem2 26365 abelthlem6 26373 logfac 26537 emcllem5 26937 lgamcvg2 26992 basellem8 27025 prmorcht 27115 pclogsum 27153 dchrisumlem2 27428 dchrmusum2 27432 dchrvmasumiflem1 27439 dchrisum0re 27451 dchrisum0lem1b 27453 dchrisum0lem2a 27455 dchrisum0lem2 27456 esumpcvgval 34091 esumcvg 34099 esumcvgsum 34101 knoppcnlem11 36547 fsumsermpt 45689 sumnnodd 45740 fourierdlem112 46326 sge0isum 46535 sge0seq 46554 |
| Copyright terms: Public domain | W3C validator |