| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaf1homlem | Structured version Visualization version GIF version | ||
| Description: Lemma for imaf1hom 49015 and other theorems. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imaf1hom.s | ⊢ 𝑆 = (𝐹 “ 𝐴) |
| imaf1hom.1 | ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) |
| imaf1hom.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| imaf1homlem | ⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaf1hom.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) | |
| 2 | f1f1orn 6828 | . . . . 5 ⊢ (𝐹:𝐵–1-1→𝐶 → 𝐹:𝐵–1-1-onto→ran 𝐹) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→ran 𝐹) |
| 4 | dff1o4 6825 | . . . . 5 ⊢ (𝐹:𝐵–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn ran 𝐹)) | |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→ran 𝐹 → ◡𝐹 Fn ran 𝐹) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → ◡𝐹 Fn ran 𝐹) |
| 7 | imassrn 6058 | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 8 | imaf1hom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 9 | imaf1hom.s | . . . . 5 ⊢ 𝑆 = (𝐹 “ 𝐴) | |
| 10 | 8, 9 | eleqtrdi 2844 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐹 “ 𝐴)) |
| 11 | 7, 10 | sselid 3956 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) |
| 12 | fnsnfv 6957 | . . 3 ⊢ ((◡𝐹 Fn ran 𝐹 ∧ 𝑋 ∈ ran 𝐹) → {(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋})) | |
| 13 | 6, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → {(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋})) |
| 14 | f1ocnvfv2 7269 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→ran 𝐹 ∧ 𝑋 ∈ ran 𝐹) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) | |
| 15 | 3, 11, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
| 16 | f1ocnvdm 7277 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→ran 𝐹 ∧ 𝑋 ∈ ran 𝐹) → (◡𝐹‘𝑋) ∈ 𝐵) | |
| 17 | 3, 11, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝐹‘𝑋) ∈ 𝐵) |
| 18 | 13, 15, 17 | 3jca 1128 | 1 ⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {csn 4601 ◡ccnv 5653 ran crn 5655 “ cima 5657 Fn wfn 6525 –1-1→wf1 6527 –1-1-onto→wf1o 6529 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 |
| This theorem is referenced by: imaf1hom 49015 imaf1co 49043 |
| Copyright terms: Public domain | W3C validator |