| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaf1homlem | Structured version Visualization version GIF version | ||
| Description: Lemma for imaf1hom 49208 and other theorems. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imaf1hom.s | ⊢ 𝑆 = (𝐹 “ 𝐴) |
| imaf1hom.1 | ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) |
| imaf1hom.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| imaf1homlem | ⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaf1hom.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) | |
| 2 | f1f1orn 6774 | . . . . 5 ⊢ (𝐹:𝐵–1-1→𝐶 → 𝐹:𝐵–1-1-onto→ran 𝐹) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→ran 𝐹) |
| 4 | dff1o4 6771 | . . . . 5 ⊢ (𝐹:𝐵–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn ran 𝐹)) | |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→ran 𝐹 → ◡𝐹 Fn ran 𝐹) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → ◡𝐹 Fn ran 𝐹) |
| 7 | imassrn 6019 | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 8 | imaf1hom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 9 | imaf1hom.s | . . . . 5 ⊢ 𝑆 = (𝐹 “ 𝐴) | |
| 10 | 8, 9 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐹 “ 𝐴)) |
| 11 | 7, 10 | sselid 3927 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) |
| 12 | fnsnfv 6901 | . . 3 ⊢ ((◡𝐹 Fn ran 𝐹 ∧ 𝑋 ∈ ran 𝐹) → {(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋})) | |
| 13 | 6, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → {(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋})) |
| 14 | f1ocnvfv2 7211 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→ran 𝐹 ∧ 𝑋 ∈ ran 𝐹) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) | |
| 15 | 3, 11, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
| 16 | f1ocnvdm 7219 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→ran 𝐹 ∧ 𝑋 ∈ ran 𝐹) → (◡𝐹‘𝑋) ∈ 𝐵) | |
| 17 | 3, 11, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝐹‘𝑋) ∈ 𝐵) |
| 18 | 13, 15, 17 | 3jca 1128 | 1 ⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4573 ◡ccnv 5613 ran crn 5615 “ cima 5617 Fn wfn 6476 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: imaf1hom 49208 imaf1co 49255 |
| Copyright terms: Public domain | W3C validator |