Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaf1homlem Structured version   Visualization version   GIF version

Theorem imaf1homlem 49207
Description: Lemma for imaf1hom 49208 and other theorems. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imaf1hom.s 𝑆 = (𝐹𝐴)
imaf1hom.1 (𝜑𝐹:𝐵1-1𝐶)
imaf1hom.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imaf1homlem (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))

Proof of Theorem imaf1homlem
StepHypRef Expression
1 imaf1hom.1 . . . . 5 (𝜑𝐹:𝐵1-1𝐶)
2 f1f1orn 6774 . . . . 5 (𝐹:𝐵1-1𝐶𝐹:𝐵1-1-onto→ran 𝐹)
31, 2syl 17 . . . 4 (𝜑𝐹:𝐵1-1-onto→ran 𝐹)
4 dff1o4 6771 . . . . 5 (𝐹:𝐵1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐵𝐹 Fn ran 𝐹))
54simprbi 496 . . . 4 (𝐹:𝐵1-1-onto→ran 𝐹𝐹 Fn ran 𝐹)
63, 5syl 17 . . 3 (𝜑𝐹 Fn ran 𝐹)
7 imassrn 6019 . . . 4 (𝐹𝐴) ⊆ ran 𝐹
8 imaf1hom.x . . . . 5 (𝜑𝑋𝑆)
9 imaf1hom.s . . . . 5 𝑆 = (𝐹𝐴)
108, 9eleqtrdi 2841 . . . 4 (𝜑𝑋 ∈ (𝐹𝐴))
117, 10sselid 3927 . . 3 (𝜑𝑋 ∈ ran 𝐹)
12 fnsnfv 6901 . . 3 ((𝐹 Fn ran 𝐹𝑋 ∈ ran 𝐹) → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
136, 11, 12syl2anc 584 . 2 (𝜑 → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
14 f1ocnvfv2 7211 . . 3 ((𝐹:𝐵1-1-onto→ran 𝐹𝑋 ∈ ran 𝐹) → (𝐹‘(𝐹𝑋)) = 𝑋)
153, 11, 14syl2anc 584 . 2 (𝜑 → (𝐹‘(𝐹𝑋)) = 𝑋)
16 f1ocnvdm 7219 . . 3 ((𝐹:𝐵1-1-onto→ran 𝐹𝑋 ∈ ran 𝐹) → (𝐹𝑋) ∈ 𝐵)
173, 11, 16syl2anc 584 . 2 (𝜑 → (𝐹𝑋) ∈ 𝐵)
1813, 15, 173jca 1128 1 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {csn 4573  ccnv 5613  ran crn 5615  cima 5617   Fn wfn 6476  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  imaf1hom  49208  imaf1co  49255
  Copyright terms: Public domain W3C validator