Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaf1homlem Structured version   Visualization version   GIF version

Theorem imaf1homlem 49100
Description: Lemma for imaf1hom 49101 and other theorems. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imaf1hom.s 𝑆 = (𝐹𝐴)
imaf1hom.1 (𝜑𝐹:𝐵1-1𝐶)
imaf1hom.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imaf1homlem (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))

Proof of Theorem imaf1homlem
StepHypRef Expression
1 imaf1hom.1 . . . . 5 (𝜑𝐹:𝐵1-1𝐶)
2 f1f1orn 6814 . . . . 5 (𝐹:𝐵1-1𝐶𝐹:𝐵1-1-onto→ran 𝐹)
31, 2syl 17 . . . 4 (𝜑𝐹:𝐵1-1-onto→ran 𝐹)
4 dff1o4 6811 . . . . 5 (𝐹:𝐵1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐵𝐹 Fn ran 𝐹))
54simprbi 496 . . . 4 (𝐹:𝐵1-1-onto→ran 𝐹𝐹 Fn ran 𝐹)
63, 5syl 17 . . 3 (𝜑𝐹 Fn ran 𝐹)
7 imassrn 6045 . . . 4 (𝐹𝐴) ⊆ ran 𝐹
8 imaf1hom.x . . . . 5 (𝜑𝑋𝑆)
9 imaf1hom.s . . . . 5 𝑆 = (𝐹𝐴)
108, 9eleqtrdi 2839 . . . 4 (𝜑𝑋 ∈ (𝐹𝐴))
117, 10sselid 3947 . . 3 (𝜑𝑋 ∈ ran 𝐹)
12 fnsnfv 6943 . . 3 ((𝐹 Fn ran 𝐹𝑋 ∈ ran 𝐹) → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
136, 11, 12syl2anc 584 . 2 (𝜑 → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
14 f1ocnvfv2 7255 . . 3 ((𝐹:𝐵1-1-onto→ran 𝐹𝑋 ∈ ran 𝐹) → (𝐹‘(𝐹𝑋)) = 𝑋)
153, 11, 14syl2anc 584 . 2 (𝜑 → (𝐹‘(𝐹𝑋)) = 𝑋)
16 f1ocnvdm 7263 . . 3 ((𝐹:𝐵1-1-onto→ran 𝐹𝑋 ∈ ran 𝐹) → (𝐹𝑋) ∈ 𝐵)
173, 11, 16syl2anc 584 . 2 (𝜑 → (𝐹𝑋) ∈ 𝐵)
1813, 15, 173jca 1128 1 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {csn 4592  ccnv 5640  ran crn 5642  cima 5644   Fn wfn 6509  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  imaf1hom  49101  imaf1co  49148
  Copyright terms: Public domain W3C validator