| Step | Hyp | Ref
| Expression |
| 1 | | imaf1co.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
| 2 | | imasubc.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐷) |
| 3 | | eqid 2734 |
. . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 4 | | imassc.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 5 | 4 | funcrcl2 48937 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 6 | 5 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → 𝐷 ∈ Cat) |
| 7 | | imasubc.s |
. . . . . . . . 9
⊢ 𝑆 = (𝐹 “ 𝐴) |
| 8 | | imaf1co.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) |
| 9 | | imaf1co.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 10 | 7, 8, 9 | imasubc3lem1 48959 |
. . . . . . . 8
⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) |
| 11 | 10 | simp3d 1144 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹‘𝑋) ∈ 𝐵) |
| 12 | 11 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (◡𝐹‘𝑋) ∈ 𝐵) |
| 13 | | imaf1co.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| 14 | 7, 8, 13 | imasubc3lem1 48959 |
. . . . . . . 8
⊢ (𝜑 → ({(◡𝐹‘𝑌)} = (◡𝐹 “ {𝑌}) ∧ (𝐹‘(◡𝐹‘𝑌)) = 𝑌 ∧ (◡𝐹‘𝑌) ∈ 𝐵)) |
| 15 | 14 | simp3d 1144 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹‘𝑌) ∈ 𝐵) |
| 16 | 15 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (◡𝐹‘𝑌) ∈ 𝐵) |
| 17 | | imaf1co.z |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| 18 | 7, 8, 17 | imasubc3lem1 48959 |
. . . . . . . 8
⊢ (𝜑 → ({(◡𝐹‘𝑍)} = (◡𝐹 “ {𝑍}) ∧ (𝐹‘(◡𝐹‘𝑍)) = 𝑍 ∧ (◡𝐹‘𝑍) ∈ 𝐵)) |
| 19 | 18 | simp3d 1144 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹‘𝑍) ∈ 𝐵) |
| 20 | 19 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (◡𝐹‘𝑍) ∈ 𝐵) |
| 21 | | simp-4r 783 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) |
| 22 | | simplr 768 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) |
| 23 | 1, 2, 3, 6, 12, 16, 20, 21, 22 | catcocl 17684 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (𝑛(〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉(comp‘𝐷)(◡𝐹‘𝑍))𝑚) ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍))) |
| 24 | | eqid 2734 |
. . . . . . . 8
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 25 | 1, 2, 24, 4, 11, 19 | funcf2 17868 |
. . . . . . 7
⊢ (𝜑 → ((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍)):((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍))⟶((𝐹‘(◡𝐹‘𝑋))(Hom ‘𝐸)(𝐹‘(◡𝐹‘𝑍)))) |
| 26 | 25 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → ((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍)):((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍))⟶((𝐹‘(◡𝐹‘𝑋))(Hom ‘𝐸)(𝐹‘(◡𝐹‘𝑍)))) |
| 27 | 26 | funfvima2d 7221 |
. . . . 5
⊢
((((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) ∧ (𝑛(〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉(comp‘𝐷)(◡𝐹‘𝑍))𝑚) ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍))) → (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍))‘(𝑛(〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉(comp‘𝐷)(◡𝐹‘𝑍))𝑚)) ∈ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍)))) |
| 28 | 23, 27 | mpdan 687 |
. . . 4
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍))‘(𝑛(〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉(comp‘𝐷)(◡𝐹‘𝑍))𝑚)) ∈ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍)))) |
| 29 | | imaf1co.o |
. . . . . 6
⊢ ∙ =
(comp‘𝐸) |
| 30 | 4 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 31 | 1, 2, 3, 29, 30, 12, 16, 20, 21, 22 | funcco 17871 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍))‘(𝑛(〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉(comp‘𝐷)(◡𝐹‘𝑍))𝑚)) = ((((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛)(〈(𝐹‘(◡𝐹‘𝑋)), (𝐹‘(◡𝐹‘𝑌))〉 ∙ (𝐹‘(◡𝐹‘𝑍)))(((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚))) |
| 32 | 10 | simp2d 1143 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
| 33 | 32 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
| 34 | 14 | simp2d 1143 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) |
| 35 | 34 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) |
| 36 | 33, 35 | opeq12d 4855 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → 〈(𝐹‘(◡𝐹‘𝑋)), (𝐹‘(◡𝐹‘𝑌))〉 = 〈𝑋, 𝑌〉) |
| 37 | 18 | simp2d 1143 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(◡𝐹‘𝑍)) = 𝑍) |
| 38 | 37 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (𝐹‘(◡𝐹‘𝑍)) = 𝑍) |
| 39 | 36, 38 | oveq12d 7418 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (〈(𝐹‘(◡𝐹‘𝑋)), (𝐹‘(◡𝐹‘𝑌))〉 ∙ (𝐹‘(◡𝐹‘𝑍))) = (〈𝑋, 𝑌〉 ∙ 𝑍)) |
| 40 | | simpr 484 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) |
| 41 | | simpllr 775 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) |
| 42 | 39, 40, 41 | oveq123d 7421 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → ((((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛)(〈(𝐹‘(◡𝐹‘𝑋)), (𝐹‘(◡𝐹‘𝑌))〉 ∙ (𝐹‘(◡𝐹‘𝑍)))(((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚)) = (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀)) |
| 43 | 31, 42 | eqtr2d 2770 |
. . . 4
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍))‘(𝑛(〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉(comp‘𝐷)(◡𝐹‘𝑍))𝑚))) |
| 44 | | relfunc 17862 |
. . . . . . . 8
⊢ Rel
(𝐷 Func 𝐸) |
| 45 | 44 | brrelex1i 5708 |
. . . . . . 7
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 𝐹 ∈ V) |
| 46 | 4, 45 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
| 47 | | imasubc.k |
. . . . . 6
⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪
𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 48 | 7, 8, 9, 17, 46, 47 | imasubc3lem2 48960 |
. . . . 5
⊢ (𝜑 → (𝑋𝐾𝑍) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍)))) |
| 49 | 48 | ad4antr 732 |
. . . 4
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (𝑋𝐾𝑍) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑍)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑍)))) |
| 50 | 28, 43, 49 | 3eltr4d 2848 |
. . 3
⊢
(((((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) ∧ 𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))) ∧ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) → (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀) ∈ (𝑋𝐾𝑍)) |
| 51 | 1, 2, 24, 4, 15, 19 | funcf2 17868 |
. . . . . 6
⊢ (𝜑 → ((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍)):((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))⟶((𝐹‘(◡𝐹‘𝑌))(Hom ‘𝐸)(𝐹‘(◡𝐹‘𝑍)))) |
| 52 | 51 | ffund 6707 |
. . . . 5
⊢ (𝜑 → Fun ((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))) |
| 53 | | imaf1co.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝑌𝐾𝑍)) |
| 54 | 7, 8, 13, 17, 46, 47 | imasubc3lem2 48960 |
. . . . . 6
⊢ (𝜑 → (𝑌𝐾𝑍) = (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍)) “ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍)))) |
| 55 | 53, 54 | eleqtrd 2835 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍)) “ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍)))) |
| 56 | | fvelima 6941 |
. . . . 5
⊢ ((Fun
((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍)) ∧ 𝑁 ∈ (((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍)) “ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍)))) → ∃𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))(((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) |
| 57 | 52, 55, 56 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))(((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) |
| 58 | 57 | ad2antrr 726 |
. . 3
⊢ (((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) → ∃𝑛 ∈ ((◡𝐹‘𝑌)𝐻(◡𝐹‘𝑍))(((◡𝐹‘𝑌)𝐺(◡𝐹‘𝑍))‘𝑛) = 𝑁) |
| 59 | 50, 58 | r19.29a 3146 |
. 2
⊢ (((𝜑 ∧ 𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) ∧ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) → (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀) ∈ (𝑋𝐾𝑍)) |
| 60 | 1, 2, 24, 4, 11, 15 | funcf2 17868 |
. . . 4
⊢ (𝜑 → ((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)):((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))⟶((𝐹‘(◡𝐹‘𝑋))(Hom ‘𝐸)(𝐹‘(◡𝐹‘𝑌)))) |
| 61 | 60 | ffund 6707 |
. . 3
⊢ (𝜑 → Fun ((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))) |
| 62 | | imaf1co.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑋𝐾𝑌)) |
| 63 | 7, 8, 9, 13, 46, 47 | imasubc3lem2 48960 |
. . . 4
⊢ (𝜑 → (𝑋𝐾𝑌) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)))) |
| 64 | 62, 63 | eleqtrd 2835 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)))) |
| 65 | | fvelima 6941 |
. . 3
⊢ ((Fun
((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) ∧ 𝑀 ∈ (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)))) → ∃𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))(((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) |
| 66 | 61, 64, 65 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))(((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))‘𝑚) = 𝑀) |
| 67 | 59, 66 | r19.29a 3146 |
1
⊢ (𝜑 → (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀) ∈ (𝑋𝐾𝑍)) |