Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaf1hom Structured version   Visualization version   GIF version

Theorem imaf1hom 49101
Description: The hom-set of an image of a functor injective on objects. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imaf1hom.s 𝑆 = (𝐹𝐴)
imaf1hom.1 (𝜑𝐹:𝐵1-1𝐶)
imaf1hom.x (𝜑𝑋𝑆)
imaf1hom.y (𝜑𝑌𝑆)
imaf1hom.f (𝜑𝐹𝑉)
imaf1hom.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
Assertion
Ref Expression
imaf1hom (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝑋,𝑝,𝑥,𝑦   𝑌,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐵(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐾(𝑥,𝑦,𝑝)   𝑉(𝑥,𝑦,𝑝)

Proof of Theorem imaf1hom
StepHypRef Expression
1 imaf1hom.f . . . 4 (𝜑𝐹𝑉)
2 imaf1hom.x . . . 4 (𝜑𝑋𝑆)
3 imaf1hom.y . . . 4 (𝜑𝑌𝑆)
4 imaf1hom.k . . . 4 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
51, 1, 2, 3, 4imasubclem3 49099 . . 3 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)))
6 imaf1hom.s . . . . . . . 8 𝑆 = (𝐹𝐴)
7 imaf1hom.1 . . . . . . . 8 (𝜑𝐹:𝐵1-1𝐶)
86, 7, 2imaf1homlem 49100 . . . . . . 7 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
98simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
106, 7, 3imaf1homlem 49100 . . . . . . 7 (𝜑 → ({(𝐹𝑌)} = (𝐹 “ {𝑌}) ∧ (𝐹‘(𝐹𝑌)) = 𝑌 ∧ (𝐹𝑌) ∈ 𝐵))
1110simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑌)} = (𝐹 “ {𝑌}))
129, 11xpeq12d 5672 . . . . 5 (𝜑 → ({(𝐹𝑋)} × {(𝐹𝑌)}) = ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})))
13 fvex 6874 . . . . . 6 (𝐹𝑋) ∈ V
14 fvex 6874 . . . . . 6 (𝐹𝑌) ∈ V
1513, 14xpsn 7116 . . . . 5 ({(𝐹𝑋)} × {(𝐹𝑌)}) = {⟨(𝐹𝑋), (𝐹𝑌)⟩}
1612, 15eqtr3di 2780 . . . 4 (𝜑 → ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})) = {⟨(𝐹𝑋), (𝐹𝑌)⟩})
1716iuneq1d 4986 . . 3 (𝜑 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
185, 17eqtrd 2765 . 2 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
19 opex 5427 . . 3 ⟨(𝐹𝑋), (𝐹𝑌)⟩ ∈ V
20 fveq2 6861 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
21 df-ov 7393 . . . . 5 ((𝐹𝑋)𝐺(𝐹𝑌)) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2220, 21eqtr4di 2783 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = ((𝐹𝑋)𝐺(𝐹𝑌)))
23 fveq2 6861 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
24 df-ov 7393 . . . . 5 ((𝐹𝑋)𝐻(𝐹𝑌)) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2523, 24eqtr4di 2783 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = ((𝐹𝑋)𝐻(𝐹𝑌)))
2622, 25imaeq12d 6035 . . 3 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
2719, 26iunxsn 5058 . 2 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌)))
2818, 27eqtrdi 2781 1 (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4592  cop 4598   ciun 4958   × cxp 5639  ccnv 5640  cima 5644  1-1wf1 6511  cfv 6514  (class class class)co 7390  cmpo 7392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395
This theorem is referenced by:  imaidfu  49103  imaf1co  49148
  Copyright terms: Public domain W3C validator