Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaf1hom Structured version   Visualization version   GIF version

Theorem imaf1hom 49208
Description: The hom-set of an image of a functor injective on objects. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imaf1hom.s 𝑆 = (𝐹𝐴)
imaf1hom.1 (𝜑𝐹:𝐵1-1𝐶)
imaf1hom.x (𝜑𝑋𝑆)
imaf1hom.y (𝜑𝑌𝑆)
imaf1hom.f (𝜑𝐹𝑉)
imaf1hom.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
Assertion
Ref Expression
imaf1hom (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝑋,𝑝,𝑥,𝑦   𝑌,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐵(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐾(𝑥,𝑦,𝑝)   𝑉(𝑥,𝑦,𝑝)

Proof of Theorem imaf1hom
StepHypRef Expression
1 imaf1hom.f . . . 4 (𝜑𝐹𝑉)
2 imaf1hom.x . . . 4 (𝜑𝑋𝑆)
3 imaf1hom.y . . . 4 (𝜑𝑌𝑆)
4 imaf1hom.k . . . 4 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
51, 1, 2, 3, 4imasubclem3 49206 . . 3 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)))
6 imaf1hom.s . . . . . . . 8 𝑆 = (𝐹𝐴)
7 imaf1hom.1 . . . . . . . 8 (𝜑𝐹:𝐵1-1𝐶)
86, 7, 2imaf1homlem 49207 . . . . . . 7 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
98simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
106, 7, 3imaf1homlem 49207 . . . . . . 7 (𝜑 → ({(𝐹𝑌)} = (𝐹 “ {𝑌}) ∧ (𝐹‘(𝐹𝑌)) = 𝑌 ∧ (𝐹𝑌) ∈ 𝐵))
1110simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑌)} = (𝐹 “ {𝑌}))
129, 11xpeq12d 5645 . . . . 5 (𝜑 → ({(𝐹𝑋)} × {(𝐹𝑌)}) = ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})))
13 fvex 6835 . . . . . 6 (𝐹𝑋) ∈ V
14 fvex 6835 . . . . . 6 (𝐹𝑌) ∈ V
1513, 14xpsn 7074 . . . . 5 ({(𝐹𝑋)} × {(𝐹𝑌)}) = {⟨(𝐹𝑋), (𝐹𝑌)⟩}
1612, 15eqtr3di 2781 . . . 4 (𝜑 → ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})) = {⟨(𝐹𝑋), (𝐹𝑌)⟩})
1716iuneq1d 4967 . . 3 (𝜑 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
185, 17eqtrd 2766 . 2 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
19 opex 5402 . . 3 ⟨(𝐹𝑋), (𝐹𝑌)⟩ ∈ V
20 fveq2 6822 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
21 df-ov 7349 . . . . 5 ((𝐹𝑋)𝐺(𝐹𝑌)) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2220, 21eqtr4di 2784 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = ((𝐹𝑋)𝐺(𝐹𝑌)))
23 fveq2 6822 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
24 df-ov 7349 . . . . 5 ((𝐹𝑋)𝐻(𝐹𝑌)) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2523, 24eqtr4di 2784 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = ((𝐹𝑋)𝐻(𝐹𝑌)))
2622, 25imaeq12d 6009 . . 3 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
2719, 26iunxsn 5037 . 2 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌)))
2818, 27eqtrdi 2782 1 (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {csn 4573  cop 4579   ciun 4939   × cxp 5612  ccnv 5613  cima 5617  1-1wf1 6478  cfv 6481  (class class class)co 7346  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  imaidfu  49210  imaf1co  49255
  Copyright terms: Public domain W3C validator