Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaf1hom Structured version   Visualization version   GIF version

Theorem imaf1hom 49015
Description: The hom-set of an image of a functor injective on objects. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imaf1hom.s 𝑆 = (𝐹𝐴)
imaf1hom.1 (𝜑𝐹:𝐵1-1𝐶)
imaf1hom.x (𝜑𝑋𝑆)
imaf1hom.y (𝜑𝑌𝑆)
imaf1hom.f (𝜑𝐹𝑉)
imaf1hom.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
Assertion
Ref Expression
imaf1hom (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝑋,𝑝,𝑥,𝑦   𝑌,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐵(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐾(𝑥,𝑦,𝑝)   𝑉(𝑥,𝑦,𝑝)

Proof of Theorem imaf1hom
StepHypRef Expression
1 imaf1hom.f . . . 4 (𝜑𝐹𝑉)
2 imaf1hom.x . . . 4 (𝜑𝑋𝑆)
3 imaf1hom.y . . . 4 (𝜑𝑌𝑆)
4 imaf1hom.k . . . 4 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
51, 1, 2, 3, 4imasubclem3 49013 . . 3 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)))
6 imaf1hom.s . . . . . . . 8 𝑆 = (𝐹𝐴)
7 imaf1hom.1 . . . . . . . 8 (𝜑𝐹:𝐵1-1𝐶)
86, 7, 2imaf1homlem 49014 . . . . . . 7 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
98simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
106, 7, 3imaf1homlem 49014 . . . . . . 7 (𝜑 → ({(𝐹𝑌)} = (𝐹 “ {𝑌}) ∧ (𝐹‘(𝐹𝑌)) = 𝑌 ∧ (𝐹𝑌) ∈ 𝐵))
1110simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑌)} = (𝐹 “ {𝑌}))
129, 11xpeq12d 5685 . . . . 5 (𝜑 → ({(𝐹𝑋)} × {(𝐹𝑌)}) = ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})))
13 fvex 6888 . . . . . 6 (𝐹𝑋) ∈ V
14 fvex 6888 . . . . . 6 (𝐹𝑌) ∈ V
1513, 14xpsn 7130 . . . . 5 ({(𝐹𝑋)} × {(𝐹𝑌)}) = {⟨(𝐹𝑋), (𝐹𝑌)⟩}
1612, 15eqtr3di 2785 . . . 4 (𝜑 → ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})) = {⟨(𝐹𝑋), (𝐹𝑌)⟩})
1716iuneq1d 4995 . . 3 (𝜑 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
185, 17eqtrd 2770 . 2 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
19 opex 5439 . . 3 ⟨(𝐹𝑋), (𝐹𝑌)⟩ ∈ V
20 fveq2 6875 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
21 df-ov 7406 . . . . 5 ((𝐹𝑋)𝐺(𝐹𝑌)) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2220, 21eqtr4di 2788 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = ((𝐹𝑋)𝐺(𝐹𝑌)))
23 fveq2 6875 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
24 df-ov 7406 . . . . 5 ((𝐹𝑋)𝐻(𝐹𝑌)) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2523, 24eqtr4di 2788 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = ((𝐹𝑋)𝐻(𝐹𝑌)))
2622, 25imaeq12d 6048 . . 3 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
2719, 26iunxsn 5067 . 2 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌)))
2818, 27eqtrdi 2786 1 (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4601  cop 4607   ciun 4967   × cxp 5652  ccnv 5653  cima 5657  1-1wf1 6527  cfv 6530  (class class class)co 7403  cmpo 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408
This theorem is referenced by:  imaidfu  49017  imaf1co  49043
  Copyright terms: Public domain W3C validator