MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtprm Structured version   Visualization version   GIF version

Theorem chtprm 25733
Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))

Proof of Theorem chtprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 peano2z 12026 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
21adantr 483 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
3 zre 11988 . . . . 5 ((𝐴 + 1) ∈ ℤ → (𝐴 + 1) ∈ ℝ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
5 chtval 25690 . . . 4 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
64, 5syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
7 ppisval 25684 . . . . . 6 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
84, 7syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
9 flid 13181 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
102, 9syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
1110oveq2d 7175 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
1211ineq1d 4191 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
138, 12eqtrd 2859 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
1413sumeq1d 15061 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
156, 14eqtrd 2859 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
16 zre 11988 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716adantr 483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
1817ltp1d 11573 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
1917, 4ltnled 10790 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
2018, 19mpbid 234 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
21 elinel1 4175 . . . . . 6 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
22 elfzle2 12914 . . . . . 6 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
2321, 22syl 17 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
2420, 23nsyl 142 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
25 disjsn 4650 . . . 4 ((((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅ ↔ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
2624, 25sylibr 236 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅)
27 2z 12017 . . . . . . 7 2 ∈ ℤ
28 zcn 11989 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2928adantr 483 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
30 ax-1cn 10598 . . . . . . . . . 10 1 ∈ ℂ
31 pncan 10895 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
3229, 30, 31sylancl 588 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
33 prmuz2 16043 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3433adantl 484 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
35 uz2m1nn 12326 . . . . . . . . . 10 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3732, 36eqeltrrd 2917 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
38 nnuz 12284 . . . . . . . . 9 ℕ = (ℤ‘1)
39 2m1e1 11766 . . . . . . . . . 10 (2 − 1) = 1
4039fveq2i 6676 . . . . . . . . 9 (ℤ‘(2 − 1)) = (ℤ‘1)
4138, 40eqtr4i 2850 . . . . . . . 8 ℕ = (ℤ‘(2 − 1))
4237, 41eleqtrdi 2926 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
43 fzsuc2 12968 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4427, 42, 43sylancr 589 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4544ineq1d 4191 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
46 indir 4255 . . . . 5 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4745, 46syl6eq 2875 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
48 simpr 487 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4948snssd 4745 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
50 df-ss 3955 . . . . . 6 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5149, 50sylib 220 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5251uneq2d 4142 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5347, 52eqtrd 2859 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
54 fzfid 13344 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) ∈ Fin)
55 inss1 4208 . . . 4 ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))
56 ssfi 8741 . . . 4 (((2...(𝐴 + 1)) ∈ Fin ∧ ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
5754, 55, 56sylancl 588 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
58 simpr 487 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
5958elin2d 4179 . . . . . . 7 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℙ)
60 prmnn 16021 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6159, 60syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℕ)
6261nnrpd 12432 . . . . 5 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
6362relogcld 25209 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
6463recnd 10672 . . 3 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
6526, 53, 57, 64fsumsplit 15100 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)))
66 chtval 25690 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6717, 66syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
68 ppisval 25684 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6917, 68syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
70 flid 13181 . . . . . . . . 9 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
7170adantr 483 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
7271oveq2d 7175 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
7372ineq1d 4191 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7469, 73eqtrd 2859 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7574sumeq1d 15061 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝))
7667, 75eqtr2d 2860 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) = (θ‘𝐴))
77 prmnn 16021 . . . . 5 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ ℕ)
7877adantl 484 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℕ)
7978nnrpd 12432 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ+)
8079relogcld 25209 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℝ)
8180recnd 10672 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℂ)
82 fveq2 6673 . . . . 5 (𝑝 = (𝐴 + 1) → (log‘𝑝) = (log‘(𝐴 + 1)))
8382sumsn 15104 . . . 4 (((𝐴 + 1) ∈ ℕ ∧ (log‘(𝐴 + 1)) ∈ ℂ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8478, 81, 83syl2anc 586 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8576, 84oveq12d 7177 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
8615, 65, 853eqtrd 2863 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4570   class class class wbr 5069  cfv 6358  (class class class)co 7159  Fincfn 8512  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cle 10679  cmin 10873  cn 11641  2c2 11695  cz 11984  cuz 12246  [,]cicc 12744  ...cfz 12895  cfl 13163  Σcsu 15045  cprime 16018  logclog 25141  θccht 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-dvds 15611  df-prm 16019  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143  df-cht 25677
This theorem is referenced by:  cht2  25752  cht3  25753
  Copyright terms: Public domain W3C validator