Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtprm Structured version   Visualization version   GIF version

Theorem chtprm 25837
 Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))

Proof of Theorem chtprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 peano2z 12062 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
21adantr 484 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
3 zre 12024 . . . . 5 ((𝐴 + 1) ∈ ℤ → (𝐴 + 1) ∈ ℝ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
5 chtval 25794 . . . 4 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
64, 5syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
7 ppisval 25788 . . . . . 6 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
84, 7syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
9 flid 13227 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
102, 9syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
1110oveq2d 7166 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
1211ineq1d 4116 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
138, 12eqtrd 2793 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
1413sumeq1d 15106 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
156, 14eqtrd 2793 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
16 zre 12024 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716adantr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
1817ltp1d 11608 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
1917, 4ltnled 10825 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
2018, 19mpbid 235 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
21 elinel1 4100 . . . . . 6 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
22 elfzle2 12960 . . . . . 6 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
2321, 22syl 17 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
2420, 23nsyl 142 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
25 disjsn 4604 . . . 4 ((((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅ ↔ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
2624, 25sylibr 237 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅)
27 2z 12053 . . . . . . 7 2 ∈ ℤ
28 zcn 12025 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2928adantr 484 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
30 ax-1cn 10633 . . . . . . . . . 10 1 ∈ ℂ
31 pncan 10930 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
3229, 30, 31sylancl 589 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
33 prmuz2 16092 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3433adantl 485 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
35 uz2m1nn 12363 . . . . . . . . . 10 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3732, 36eqeltrrd 2853 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
38 nnuz 12321 . . . . . . . . 9 ℕ = (ℤ‘1)
39 2m1e1 11800 . . . . . . . . . 10 (2 − 1) = 1
4039fveq2i 6661 . . . . . . . . 9 (ℤ‘(2 − 1)) = (ℤ‘1)
4138, 40eqtr4i 2784 . . . . . . . 8 ℕ = (ℤ‘(2 − 1))
4237, 41eleqtrdi 2862 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
43 fzsuc2 13014 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4427, 42, 43sylancr 590 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4544ineq1d 4116 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
46 indir 4180 . . . . 5 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4745, 46eqtrdi 2809 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
48 simpr 488 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4948snssd 4699 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
50 df-ss 3875 . . . . . 6 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5149, 50sylib 221 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5251uneq2d 4068 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5347, 52eqtrd 2793 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
54 fzfid 13390 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) ∈ Fin)
55 inss1 4133 . . . 4 ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))
56 ssfi 8742 . . . 4 (((2...(𝐴 + 1)) ∈ Fin ∧ ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
5754, 55, 56sylancl 589 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
58 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
5958elin2d 4104 . . . . . . 7 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℙ)
60 prmnn 16070 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6159, 60syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℕ)
6261nnrpd 12470 . . . . 5 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
6362relogcld 25313 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
6463recnd 10707 . . 3 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
6526, 53, 57, 64fsumsplit 15145 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)))
66 chtval 25794 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6717, 66syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
68 ppisval 25788 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6917, 68syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
70 flid 13227 . . . . . . . . 9 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
7170adantr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
7271oveq2d 7166 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
7372ineq1d 4116 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7469, 73eqtrd 2793 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7574sumeq1d 15106 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝))
7667, 75eqtr2d 2794 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) = (θ‘𝐴))
77 prmnn 16070 . . . . 5 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ ℕ)
7877adantl 485 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℕ)
7978nnrpd 12470 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ+)
8079relogcld 25313 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℝ)
8180recnd 10707 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℂ)
82 fveq2 6658 . . . . 5 (𝑝 = (𝐴 + 1) → (log‘𝑝) = (log‘(𝐴 + 1)))
8382sumsn 15149 . . . 4 (((𝐴 + 1) ∈ ℕ ∧ (log‘(𝐴 + 1)) ∈ ℂ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8478, 81, 83syl2anc 587 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8576, 84oveq12d 7168 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
8615, 65, 853eqtrd 2797 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∪ cun 3856   ∩ cin 3857   ⊆ wss 3858  ∅c0 4225  {csn 4522   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  Fincfn 8527  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   + caddc 10578   < clt 10713   ≤ cle 10714   − cmin 10908  ℕcn 11674  2c2 11729  ℤcz 12020  ℤ≥cuz 12282  [,]cicc 12782  ...cfz 12939  ⌊cfl 13209  Σcsu 15090  ℙcprime 16067  logclog 25245  θccht 25775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-dvds 15656  df-prm 16068  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-cht 25781 This theorem is referenced by:  cht2  25856  cht3  25857
 Copyright terms: Public domain W3C validator