MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtprm Structured version   Visualization version   GIF version

Theorem chtprm 25100
Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))

Proof of Theorem chtprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 peano2z 11625 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
21adantr 466 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
3 zre 11588 . . . . 5 ((𝐴 + 1) ∈ ℤ → (𝐴 + 1) ∈ ℝ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
5 chtval 25057 . . . 4 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
64, 5syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
7 ppisval 25051 . . . . . 6 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
84, 7syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
9 flid 12817 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
102, 9syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
1110oveq2d 6812 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
1211ineq1d 3964 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
138, 12eqtrd 2805 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
1413sumeq1d 14639 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
156, 14eqtrd 2805 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
16 zre 11588 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716adantr 466 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
1817ltp1d 11160 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
1917, 4ltnled 10390 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
2018, 19mpbid 222 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
21 inss1 3981 . . . . . . 7 ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)
2221sseli 3748 . . . . . 6 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
23 elfzle2 12552 . . . . . 6 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
2422, 23syl 17 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
2520, 24nsyl 137 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
26 disjsn 4384 . . . 4 ((((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅ ↔ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
2725, 26sylibr 224 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅)
28 2z 11616 . . . . . . 7 2 ∈ ℤ
29 zcn 11589 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
3029adantr 466 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
31 ax-1cn 10200 . . . . . . . . . 10 1 ∈ ℂ
32 pncan 10493 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
3330, 31, 32sylancl 574 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
34 prmuz2 15615 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3534adantl 467 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
36 uz2m1nn 11971 . . . . . . . . . 10 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3735, 36syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3833, 37eqeltrrd 2851 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
39 nnuz 11930 . . . . . . . . 9 ℕ = (ℤ‘1)
40 2m1e1 11342 . . . . . . . . . 10 (2 − 1) = 1
4140fveq2i 6336 . . . . . . . . 9 (ℤ‘(2 − 1)) = (ℤ‘1)
4239, 41eqtr4i 2796 . . . . . . . 8 ℕ = (ℤ‘(2 − 1))
4338, 42syl6eleq 2860 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
44 fzsuc2 12605 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4528, 43, 44sylancr 575 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4645ineq1d 3964 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
47 indir 4024 . . . . 5 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4846, 47syl6eq 2821 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
49 simpr 471 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
5049snssd 4476 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
51 df-ss 3737 . . . . . 6 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5250, 51sylib 208 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5352uneq2d 3918 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5448, 53eqtrd 2805 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
55 fzfid 12980 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) ∈ Fin)
56 inss1 3981 . . . 4 ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))
57 ssfi 8340 . . . 4 (((2...(𝐴 + 1)) ∈ Fin ∧ ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
5855, 56, 57sylancl 574 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
59 inss2 3982 . . . . . . . 8 ((2...(𝐴 + 1)) ∩ ℙ) ⊆ ℙ
60 simpr 471 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
6159, 60sseldi 3750 . . . . . . 7 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℙ)
62 prmnn 15595 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6361, 62syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℕ)
6463nnrpd 12073 . . . . 5 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
6564relogcld 24590 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
6665recnd 10274 . . 3 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
6727, 54, 58, 66fsumsplit 14679 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)))
68 chtval 25057 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6917, 68syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
70 ppisval 25051 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
7117, 70syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
72 flid 12817 . . . . . . . . 9 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
7372adantr 466 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
7473oveq2d 6812 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
7574ineq1d 3964 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7671, 75eqtrd 2805 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7776sumeq1d 14639 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝))
7869, 77eqtr2d 2806 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) = (θ‘𝐴))
79 prmnn 15595 . . . . 5 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ ℕ)
8079adantl 467 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℕ)
8180nnrpd 12073 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ+)
8281relogcld 24590 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℝ)
8382recnd 10274 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℂ)
84 fveq2 6333 . . . . 5 (𝑝 = (𝐴 + 1) → (log‘𝑝) = (log‘(𝐴 + 1)))
8584sumsn 14683 . . . 4 (((𝐴 + 1) ∈ ℕ ∧ (log‘(𝐴 + 1)) ∈ ℂ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8680, 83, 85syl2anc 573 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8778, 86oveq12d 6814 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
8815, 67, 873eqtrd 2809 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  cun 3721  cin 3722  wss 3723  c0 4063  {csn 4317   class class class wbr 4787  cfv 6030  (class class class)co 6796  Fincfn 8113  cc 10140  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   < clt 10280  cle 10281  cmin 10472  cn 11226  2c2 11276  cz 11584  cuz 11893  [,]cicc 12383  ...cfz 12533  cfl 12799  Σcsu 14624  cprime 15592  logclog 24522  θccht 25038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-prm 15593  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-cht 25044
This theorem is referenced by:  cht2  25119  cht3  25120
  Copyright terms: Public domain W3C validator