MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtprm Structured version   Visualization version   GIF version

Theorem chtprm 26207
Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))

Proof of Theorem chtprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 peano2z 12291 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
21adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
3 zre 12253 . . . . 5 ((𝐴 + 1) ∈ ℤ → (𝐴 + 1) ∈ ℝ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
5 chtval 26164 . . . 4 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
64, 5syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
7 ppisval 26158 . . . . . 6 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
84, 7syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
9 flid 13456 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
102, 9syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
1110oveq2d 7271 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
1211ineq1d 4142 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
138, 12eqtrd 2778 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
1413sumeq1d 15341 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
156, 14eqtrd 2778 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝))
16 zre 12253 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716adantr 480 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
1817ltp1d 11835 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
1917, 4ltnled 11052 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
2018, 19mpbid 231 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
21 elinel1 4125 . . . . . 6 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
22 elfzle2 13189 . . . . . 6 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
2321, 22syl 17 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
2420, 23nsyl 140 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
25 disjsn 4644 . . . 4 ((((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅ ↔ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
2624, 25sylibr 233 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∩ {(𝐴 + 1)}) = ∅)
27 2z 12282 . . . . . . 7 2 ∈ ℤ
28 zcn 12254 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2928adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
30 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
31 pncan 11157 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
3229, 30, 31sylancl 585 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
33 prmuz2 16329 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3433adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
35 uz2m1nn 12592 . . . . . . . . . 10 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3732, 36eqeltrrd 2840 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
38 nnuz 12550 . . . . . . . . 9 ℕ = (ℤ‘1)
39 2m1e1 12029 . . . . . . . . . 10 (2 − 1) = 1
4039fveq2i 6759 . . . . . . . . 9 (ℤ‘(2 − 1)) = (ℤ‘1)
4138, 40eqtr4i 2769 . . . . . . . 8 ℕ = (ℤ‘(2 − 1))
4237, 41eleqtrdi 2849 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
43 fzsuc2 13243 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4427, 42, 43sylancr 586 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4544ineq1d 4142 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
46 indir 4206 . . . . 5 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4745, 46eqtrdi 2795 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
48 simpr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4948snssd 4739 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
50 df-ss 3900 . . . . . 6 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5149, 50sylib 217 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
5251uneq2d 4093 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5347, 52eqtrd 2778 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
54 fzfid 13621 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) ∈ Fin)
55 inss1 4159 . . . 4 ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))
56 ssfi 8918 . . . 4 (((2...(𝐴 + 1)) ∈ Fin ∧ ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
5754, 55, 56sylancl 585 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ∈ Fin)
58 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
5958elin2d 4129 . . . . . . 7 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℙ)
60 prmnn 16307 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6159, 60syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℕ)
6261nnrpd 12699 . . . . 5 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
6362relogcld 25683 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
6463recnd 10934 . . 3 (((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) ∧ 𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
6526, 53, 57, 64fsumsplit 15381 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...(𝐴 + 1)) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)))
66 chtval 26164 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6717, 66syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
68 ppisval 26158 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6917, 68syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
70 flid 13456 . . . . . . . . 9 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
7170adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
7271oveq2d 7271 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
7372ineq1d 4142 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7469, 73eqtrd 2778 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
7574sumeq1d 15341 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝))
7667, 75eqtr2d 2779 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) = (θ‘𝐴))
77 prmnn 16307 . . . . 5 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ ℕ)
7877adantl 481 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℕ)
7978nnrpd 12699 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ+)
8079relogcld 25683 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℝ)
8180recnd 10934 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (log‘(𝐴 + 1)) ∈ ℂ)
82 fveq2 6756 . . . . 5 (𝑝 = (𝐴 + 1) → (log‘𝑝) = (log‘(𝐴 + 1)))
8382sumsn 15386 . . . 4 (((𝐴 + 1) ∈ ℕ ∧ (log‘(𝐴 + 1)) ∈ ℂ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8478, 81, 83syl2anc 583 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝) = (log‘(𝐴 + 1)))
8576, 84oveq12d 7273 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (Σ𝑝 ∈ ((2...𝐴) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ {(𝐴 + 1)} (log‘𝑝)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
8615, 65, 853eqtrd 2782 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  cz 12249  cuz 12511  [,]cicc 13011  ...cfz 13168  cfl 13438  Σcsu 15325  cprime 16304  logclog 25615  θccht 26145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-prm 16305  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cht 26151
This theorem is referenced by:  cht2  26226  cht3  26227
  Copyright terms: Public domain W3C validator