Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt24 Structured version   Visualization version   GIF version

Theorem metakunt24 40076
Description: Technical condition such that metakunt17 40069 holds. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt24.1 (𝜑𝑀 ∈ ℕ)
metakunt24.2 (𝜑𝐼 ∈ ℕ)
metakunt24.3 (𝜑𝐼𝑀)
Assertion
Ref Expression
metakunt24 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))

Proof of Theorem metakunt24
StepHypRef Expression
1 indir 4206 . . . 4 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
21a1i 11 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3 metakunt24.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
4 metakunt24.2 . . . . . . . 8 (𝜑𝐼 ∈ ℕ)
5 metakunt24.3 . . . . . . . 8 (𝜑𝐼𝑀)
63, 4, 5metakunt18 40070 . . . . . . 7 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
76simpld 494 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
87simp2d 1141 . . . . 5 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
97simp3d 1142 . . . . 5 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
108, 9uneq12d 4094 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
11 unidm 4082 . . . . 5 (∅ ∪ ∅) = ∅
1211a1i 11 . . . 4 (𝜑 → (∅ ∪ ∅) = ∅)
1310, 12eqtrd 2778 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
142, 13eqtrd 2778 . 2 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
15 1zzd 12281 . . . . 5 (𝜑 → 1 ∈ ℤ)
163nnzd 12354 . . . . 5 (𝜑𝑀 ∈ ℤ)
173nnge1d 11951 . . . . 5 (𝜑 → 1 ≤ 𝑀)
183nnred 11918 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1918leidd 11471 . . . . 5 (𝜑𝑀𝑀)
2015, 16, 16, 17, 19elfzd 13176 . . . 4 (𝜑𝑀 ∈ (1...𝑀))
2120fzsplitnd 39919 . . 3 (𝜑 → (1...𝑀) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
22 oveq1 7262 . . . . . . . . . 10 (𝐼 = 𝑀 → (𝐼 − 1) = (𝑀 − 1))
2322oveq2d 7271 . . . . . . . . 9 (𝐼 = 𝑀 → (1...(𝐼 − 1)) = (1...(𝑀 − 1)))
24 oveq1 7262 . . . . . . . . 9 (𝐼 = 𝑀 → (𝐼...(𝑀 − 1)) = (𝑀...(𝑀 − 1)))
2523, 24uneq12d 4094 . . . . . . . 8 (𝐼 = 𝑀 → ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) = ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))))
2625uneq1d 4092 . . . . . . 7 (𝐼 = 𝑀 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)))
2726adantl 481 . . . . . 6 ((𝜑𝐼 = 𝑀) → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)))
2818ltm1d 11837 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
2916, 15zsubcld 12360 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℤ)
30 fzn 13201 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3116, 29, 30syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3228, 31mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3332adantr 480 . . . . . . . . 9 ((𝜑𝐼 = 𝑀) → (𝑀...(𝑀 − 1)) = ∅)
3433uneq2d 4093 . . . . . . . 8 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) = ((1...(𝑀 − 1)) ∪ ∅))
35 un0 4321 . . . . . . . . 9 ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1))
3635a1i 11 . . . . . . . 8 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1)))
3734, 36eqtrd 2778 . . . . . . 7 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) = (1...(𝑀 − 1)))
3837uneq1d 4092 . . . . . 6 ((𝜑𝐼 = 𝑀) → (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
3927, 38eqtrd 2778 . . . . 5 ((𝜑𝐼 = 𝑀) → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
4039eqcomd 2744 . . . 4 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
4115adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ∈ ℤ)
4216adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀 ∈ ℤ)
4342, 41zsubcld 12360 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀 − 1) ∈ ℤ)
444nnzd 12354 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
4544adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ∈ ℤ)
464nnge1d 11951 . . . . . . 7 (𝜑 → 1 ≤ 𝐼)
4746adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ≤ 𝐼)
48 eqid 2738 . . . . . . . . . . 11 𝑀 = 𝑀
49 eqeq1 2742 . . . . . . . . . . 11 (𝑀 = 𝐼 → (𝑀 = 𝑀𝐼 = 𝑀))
5048, 49mpbii 232 . . . . . . . . . 10 (𝑀 = 𝐼𝐼 = 𝑀)
5150necon3bi 2969 . . . . . . . . 9 𝐼 = 𝑀𝑀𝐼)
5251adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀𝐼)
534nnred 11918 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
5453, 18, 5leltned 11058 . . . . . . . . 9 (𝜑 → (𝐼 < 𝑀𝑀𝐼))
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝐼 < 𝑀𝑀𝐼))
5652, 55mpbird 256 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 < 𝑀)
57 zltlem1 12303 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
5844, 16, 57syl2anc 583 . . . . . . . 8 (𝜑 → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
5958adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
6056, 59mpbid 231 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ≤ (𝑀 − 1))
6141, 43, 45, 47, 60fzsplitnr 39920 . . . . 5 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6261uneq1d 4092 . . . 4 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
6340, 62pm2.61dan 809 . . 3 (𝜑 → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
64 fzsn 13227 . . . . 5 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
6516, 64syl 17 . . . 4 (𝜑 → (𝑀...𝑀) = {𝑀})
6665uneq2d 4093 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
6721, 63, 663eqtrd 2782 . 2 (𝜑 → (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
68 uncom 4083 . . . . . 6 ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1)))
6968a1i 11 . . . . 5 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
7069uneq1d 4092 . . . 4 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}))
7165uneq2d 4093 . . . . . 6 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}))
7271eqcomd 2744 . . . . 5 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
73 fz10 13206 . . . . . . . . . . . . . . 15 (1...0) = ∅
7473uneq1i 4089 . . . . . . . . . . . . . 14 ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1)))
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1))))
7675adantr 480 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1))))
77 uncom 4083 . . . . . . . . . . . . . . 15 ((1...(𝑀 − 1)) ∪ ∅) = (∅ ∪ (1...(𝑀 − 1)))
7877eqeq1i 2743 . . . . . . . . . . . . . 14 (((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1)) ↔ (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
7978imbi2i 335 . . . . . . . . . . . . 13 (((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1))) ↔ ((𝜑𝐼 = 𝑀) → (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1))))
8036, 79mpbi 229 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
8176, 80eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
8281eqcomd 2744 . . . . . . . . . 10 ((𝜑𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...0) ∪ (1...(𝑀 − 1))))
83 oveq2 7263 . . . . . . . . . . . . . . 15 (𝐼 = 𝑀 → (𝑀𝐼) = (𝑀𝑀))
8483adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → (𝑀𝐼) = (𝑀𝑀))
8518recnd 10934 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℂ)
8685subidd 11250 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑀) = 0)
8786adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → (𝑀𝑀) = 0)
8884, 87eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝐼 = 𝑀) → (𝑀𝐼) = 0)
8988oveq2d 7271 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (1...(𝑀𝐼)) = (1...0))
9083oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝐼 = 𝑀 → ((𝑀𝐼) + 1) = ((𝑀𝑀) + 1))
9190adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = ((𝑀𝑀) + 1))
9287oveq1d 7270 . . . . . . . . . . . . . . 15 ((𝜑𝐼 = 𝑀) → ((𝑀𝑀) + 1) = (0 + 1))
9391, 92eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = (0 + 1))
94 1e0p1 12408 . . . . . . . . . . . . . 14 1 = (0 + 1)
9593, 94eqtr4di 2797 . . . . . . . . . . . . 13 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = 1)
9695oveq1d 7270 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (((𝑀𝐼) + 1)...(𝑀 − 1)) = (1...(𝑀 − 1)))
9789, 96uneq12d 4094 . . . . . . . . . . 11 ((𝜑𝐼 = 𝑀) → ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ((1...0) ∪ (1...(𝑀 − 1))))
9897eqcomd 2744 . . . . . . . . . 10 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
9982, 98eqtrd 2778 . . . . . . . . 9 ((𝜑𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
10042, 45zsubcld 12360 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ∈ ℤ)
10153adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ∈ ℝ)
10218adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀 ∈ ℝ)
103 1red 10907 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ∈ ℝ)
104101, 102, 103, 60lesubd 11509 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ≤ (𝑀𝐼))
105103, 101, 102, 47lesub2dd 11522 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ≤ (𝑀 − 1))
10641, 43, 100, 104, 105elfzd 13176 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ∈ (1...(𝑀 − 1)))
107 fzsplit 13211 . . . . . . . . . 10 ((𝑀𝐼) ∈ (1...(𝑀 − 1)) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
108106, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
10999, 108pm2.61dan 809 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
110109uneq1d 4092 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
11121, 110eqtrd 2778 . . . . . 6 (𝜑 → (1...𝑀) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
112111eqcomd 2744 . . . . 5 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (1...𝑀))
11372, 112eqtrd 2778 . . . 4 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}) = (1...𝑀))
11470, 113eqtrd 2778 . . 3 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}) = (1...𝑀))
115114eqcomd 2744 . 2 (𝜑 → (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}))
11614, 67, 1153jca 1126 1 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cun 3881  cin 3882  c0 4253  {csn 4558   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169
This theorem is referenced by:  metakunt25  40077
  Copyright terms: Public domain W3C validator