Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt24 Structured version   Visualization version   GIF version

Theorem metakunt24 42230
Description: Technical condition such that metakunt17 42223 holds. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt24.1 (𝜑𝑀 ∈ ℕ)
metakunt24.2 (𝜑𝐼 ∈ ℕ)
metakunt24.3 (𝜑𝐼𝑀)
Assertion
Ref Expression
metakunt24 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))

Proof of Theorem metakunt24
StepHypRef Expression
1 indir 4285 . . . 4 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
21a1i 11 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3 metakunt24.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
4 metakunt24.2 . . . . . . . 8 (𝜑𝐼 ∈ ℕ)
5 metakunt24.3 . . . . . . . 8 (𝜑𝐼𝑀)
63, 4, 5metakunt18 42224 . . . . . . 7 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
76simpld 494 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
87simp2d 1143 . . . . 5 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
97simp3d 1144 . . . . 5 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
108, 9uneq12d 4168 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
11 unidm 4156 . . . . 5 (∅ ∪ ∅) = ∅
1211a1i 11 . . . 4 (𝜑 → (∅ ∪ ∅) = ∅)
1310, 12eqtrd 2776 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
142, 13eqtrd 2776 . 2 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
15 1zzd 12650 . . . . 5 (𝜑 → 1 ∈ ℤ)
163nnzd 12642 . . . . 5 (𝜑𝑀 ∈ ℤ)
173nnge1d 12315 . . . . 5 (𝜑 → 1 ≤ 𝑀)
183nnred 12282 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1918leidd 11830 . . . . 5 (𝜑𝑀𝑀)
2015, 16, 16, 17, 19elfzd 13556 . . . 4 (𝜑𝑀 ∈ (1...𝑀))
2120fzsplitnd 41984 . . 3 (𝜑 → (1...𝑀) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
22 oveq1 7439 . . . . . . . . . 10 (𝐼 = 𝑀 → (𝐼 − 1) = (𝑀 − 1))
2322oveq2d 7448 . . . . . . . . 9 (𝐼 = 𝑀 → (1...(𝐼 − 1)) = (1...(𝑀 − 1)))
24 oveq1 7439 . . . . . . . . 9 (𝐼 = 𝑀 → (𝐼...(𝑀 − 1)) = (𝑀...(𝑀 − 1)))
2523, 24uneq12d 4168 . . . . . . . 8 (𝐼 = 𝑀 → ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) = ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))))
2625uneq1d 4166 . . . . . . 7 (𝐼 = 𝑀 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)))
2726adantl 481 . . . . . 6 ((𝜑𝐼 = 𝑀) → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)))
2818ltm1d 12201 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
2916, 15zsubcld 12729 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℤ)
30 fzn 13581 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3116, 29, 30syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3228, 31mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3332adantr 480 . . . . . . . . 9 ((𝜑𝐼 = 𝑀) → (𝑀...(𝑀 − 1)) = ∅)
3433uneq2d 4167 . . . . . . . 8 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) = ((1...(𝑀 − 1)) ∪ ∅))
35 un0 4393 . . . . . . . . 9 ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1))
3635a1i 11 . . . . . . . 8 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1)))
3734, 36eqtrd 2776 . . . . . . 7 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) = (1...(𝑀 − 1)))
3837uneq1d 4166 . . . . . 6 ((𝜑𝐼 = 𝑀) → (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
3927, 38eqtrd 2776 . . . . 5 ((𝜑𝐼 = 𝑀) → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
4039eqcomd 2742 . . . 4 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
4115adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ∈ ℤ)
4216adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀 ∈ ℤ)
4342, 41zsubcld 12729 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀 − 1) ∈ ℤ)
444nnzd 12642 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
4544adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ∈ ℤ)
464nnge1d 12315 . . . . . . 7 (𝜑 → 1 ≤ 𝐼)
4746adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ≤ 𝐼)
48 eqid 2736 . . . . . . . . . . 11 𝑀 = 𝑀
49 eqeq1 2740 . . . . . . . . . . 11 (𝑀 = 𝐼 → (𝑀 = 𝑀𝐼 = 𝑀))
5048, 49mpbii 233 . . . . . . . . . 10 (𝑀 = 𝐼𝐼 = 𝑀)
5150necon3bi 2966 . . . . . . . . 9 𝐼 = 𝑀𝑀𝐼)
5251adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀𝐼)
534nnred 12282 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
5453, 18, 5leltned 11415 . . . . . . . . 9 (𝜑 → (𝐼 < 𝑀𝑀𝐼))
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝐼 < 𝑀𝑀𝐼))
5652, 55mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 < 𝑀)
57 zltlem1 12672 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
5844, 16, 57syl2anc 584 . . . . . . . 8 (𝜑 → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
5958adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
6056, 59mpbid 232 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ≤ (𝑀 − 1))
6141, 43, 45, 47, 60fzsplitnr 41985 . . . . 5 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6261uneq1d 4166 . . . 4 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
6340, 62pm2.61dan 812 . . 3 (𝜑 → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
64 fzsn 13607 . . . . 5 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
6516, 64syl 17 . . . 4 (𝜑 → (𝑀...𝑀) = {𝑀})
6665uneq2d 4167 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
6721, 63, 663eqtrd 2780 . 2 (𝜑 → (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
68 uncom 4157 . . . . . 6 ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1)))
6968a1i 11 . . . . 5 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
7069uneq1d 4166 . . . 4 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}))
7165uneq2d 4167 . . . . . 6 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}))
7271eqcomd 2742 . . . . 5 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
73 fz10 13586 . . . . . . . . . . . . . . 15 (1...0) = ∅
7473uneq1i 4163 . . . . . . . . . . . . . 14 ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1)))
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1))))
7675adantr 480 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1))))
77 uncom 4157 . . . . . . . . . . . . . . 15 ((1...(𝑀 − 1)) ∪ ∅) = (∅ ∪ (1...(𝑀 − 1)))
7877eqeq1i 2741 . . . . . . . . . . . . . 14 (((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1)) ↔ (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
7978imbi2i 336 . . . . . . . . . . . . 13 (((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1))) ↔ ((𝜑𝐼 = 𝑀) → (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1))))
8036, 79mpbi 230 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
8176, 80eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
8281eqcomd 2742 . . . . . . . . . 10 ((𝜑𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...0) ∪ (1...(𝑀 − 1))))
83 oveq2 7440 . . . . . . . . . . . . . . 15 (𝐼 = 𝑀 → (𝑀𝐼) = (𝑀𝑀))
8483adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → (𝑀𝐼) = (𝑀𝑀))
8518recnd 11290 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℂ)
8685subidd 11609 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑀) = 0)
8786adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → (𝑀𝑀) = 0)
8884, 87eqtrd 2776 . . . . . . . . . . . . 13 ((𝜑𝐼 = 𝑀) → (𝑀𝐼) = 0)
8988oveq2d 7448 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (1...(𝑀𝐼)) = (1...0))
9083oveq1d 7447 . . . . . . . . . . . . . . . 16 (𝐼 = 𝑀 → ((𝑀𝐼) + 1) = ((𝑀𝑀) + 1))
9190adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = ((𝑀𝑀) + 1))
9287oveq1d 7447 . . . . . . . . . . . . . . 15 ((𝜑𝐼 = 𝑀) → ((𝑀𝑀) + 1) = (0 + 1))
9391, 92eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = (0 + 1))
94 1e0p1 12777 . . . . . . . . . . . . . 14 1 = (0 + 1)
9593, 94eqtr4di 2794 . . . . . . . . . . . . 13 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = 1)
9695oveq1d 7447 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (((𝑀𝐼) + 1)...(𝑀 − 1)) = (1...(𝑀 − 1)))
9789, 96uneq12d 4168 . . . . . . . . . . 11 ((𝜑𝐼 = 𝑀) → ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ((1...0) ∪ (1...(𝑀 − 1))))
9897eqcomd 2742 . . . . . . . . . 10 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
9982, 98eqtrd 2776 . . . . . . . . 9 ((𝜑𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
10042, 45zsubcld 12729 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ∈ ℤ)
10153adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ∈ ℝ)
10218adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀 ∈ ℝ)
103 1red 11263 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ∈ ℝ)
104101, 102, 103, 60lesubd 11868 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ≤ (𝑀𝐼))
105103, 101, 102, 47lesub2dd 11881 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ≤ (𝑀 − 1))
10641, 43, 100, 104, 105elfzd 13556 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ∈ (1...(𝑀 − 1)))
107 fzsplit 13591 . . . . . . . . . 10 ((𝑀𝐼) ∈ (1...(𝑀 − 1)) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
108106, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
10999, 108pm2.61dan 812 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
110109uneq1d 4166 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
11121, 110eqtrd 2776 . . . . . 6 (𝜑 → (1...𝑀) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
112111eqcomd 2742 . . . . 5 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (1...𝑀))
11372, 112eqtrd 2776 . . . 4 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}) = (1...𝑀))
11470, 113eqtrd 2776 . . 3 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}) = (1...𝑀))
115114eqcomd 2742 . 2 (𝜑 → (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}))
11614, 67, 1153jca 1128 1 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  cun 3948  cin 3949  c0 4332  {csn 4625   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  cz 12615  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549
This theorem is referenced by:  metakunt25  42231
  Copyright terms: Public domain W3C validator