Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt24 Structured version   Visualization version   GIF version

Theorem metakunt24 42185
Description: Technical condition such that metakunt17 42178 holds. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt24.1 (𝜑𝑀 ∈ ℕ)
metakunt24.2 (𝜑𝐼 ∈ ℕ)
metakunt24.3 (𝜑𝐼𝑀)
Assertion
Ref Expression
metakunt24 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))

Proof of Theorem metakunt24
StepHypRef Expression
1 indir 4305 . . . 4 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
21a1i 11 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3 metakunt24.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
4 metakunt24.2 . . . . . . . 8 (𝜑𝐼 ∈ ℕ)
5 metakunt24.3 . . . . . . . 8 (𝜑𝐼𝑀)
63, 4, 5metakunt18 42179 . . . . . . 7 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
76simpld 494 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
87simp2d 1143 . . . . 5 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
97simp3d 1144 . . . . 5 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
108, 9uneq12d 4192 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
11 unidm 4180 . . . . 5 (∅ ∪ ∅) = ∅
1211a1i 11 . . . 4 (𝜑 → (∅ ∪ ∅) = ∅)
1310, 12eqtrd 2780 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
142, 13eqtrd 2780 . 2 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
15 1zzd 12674 . . . . 5 (𝜑 → 1 ∈ ℤ)
163nnzd 12666 . . . . 5 (𝜑𝑀 ∈ ℤ)
173nnge1d 12341 . . . . 5 (𝜑 → 1 ≤ 𝑀)
183nnred 12308 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1918leidd 11856 . . . . 5 (𝜑𝑀𝑀)
2015, 16, 16, 17, 19elfzd 13575 . . . 4 (𝜑𝑀 ∈ (1...𝑀))
2120fzsplitnd 41939 . . 3 (𝜑 → (1...𝑀) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
22 oveq1 7455 . . . . . . . . . 10 (𝐼 = 𝑀 → (𝐼 − 1) = (𝑀 − 1))
2322oveq2d 7464 . . . . . . . . 9 (𝐼 = 𝑀 → (1...(𝐼 − 1)) = (1...(𝑀 − 1)))
24 oveq1 7455 . . . . . . . . 9 (𝐼 = 𝑀 → (𝐼...(𝑀 − 1)) = (𝑀...(𝑀 − 1)))
2523, 24uneq12d 4192 . . . . . . . 8 (𝐼 = 𝑀 → ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) = ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))))
2625uneq1d 4190 . . . . . . 7 (𝐼 = 𝑀 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)))
2726adantl 481 . . . . . 6 ((𝜑𝐼 = 𝑀) → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)))
2818ltm1d 12227 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
2916, 15zsubcld 12752 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℤ)
30 fzn 13600 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3116, 29, 30syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3228, 31mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3332adantr 480 . . . . . . . . 9 ((𝜑𝐼 = 𝑀) → (𝑀...(𝑀 − 1)) = ∅)
3433uneq2d 4191 . . . . . . . 8 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) = ((1...(𝑀 − 1)) ∪ ∅))
35 un0 4417 . . . . . . . . 9 ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1))
3635a1i 11 . . . . . . . 8 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1)))
3734, 36eqtrd 2780 . . . . . . 7 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) = (1...(𝑀 − 1)))
3837uneq1d 4190 . . . . . 6 ((𝜑𝐼 = 𝑀) → (((1...(𝑀 − 1)) ∪ (𝑀...(𝑀 − 1))) ∪ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
3927, 38eqtrd 2780 . . . . 5 ((𝜑𝐼 = 𝑀) → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)))
4039eqcomd 2746 . . . 4 ((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
4115adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ∈ ℤ)
4216adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀 ∈ ℤ)
4342, 41zsubcld 12752 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀 − 1) ∈ ℤ)
444nnzd 12666 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
4544adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ∈ ℤ)
464nnge1d 12341 . . . . . . 7 (𝜑 → 1 ≤ 𝐼)
4746adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ≤ 𝐼)
48 eqid 2740 . . . . . . . . . . 11 𝑀 = 𝑀
49 eqeq1 2744 . . . . . . . . . . 11 (𝑀 = 𝐼 → (𝑀 = 𝑀𝐼 = 𝑀))
5048, 49mpbii 233 . . . . . . . . . 10 (𝑀 = 𝐼𝐼 = 𝑀)
5150necon3bi 2973 . . . . . . . . 9 𝐼 = 𝑀𝑀𝐼)
5251adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀𝐼)
534nnred 12308 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
5453, 18, 5leltned 11443 . . . . . . . . 9 (𝜑 → (𝐼 < 𝑀𝑀𝐼))
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝐼 < 𝑀𝑀𝐼))
5652, 55mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 < 𝑀)
57 zltlem1 12696 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
5844, 16, 57syl2anc 583 . . . . . . . 8 (𝜑 → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
5958adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝐼 < 𝑀𝐼 ≤ (𝑀 − 1)))
6056, 59mpbid 232 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ≤ (𝑀 − 1))
6141, 43, 45, 47, 60fzsplitnr 41940 . . . . 5 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6261uneq1d 4190 . . . 4 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
6340, 62pm2.61dan 812 . . 3 (𝜑 → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)))
64 fzsn 13626 . . . . 5 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
6516, 64syl 17 . . . 4 (𝜑 → (𝑀...𝑀) = {𝑀})
6665uneq2d 4191 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
6721, 63, 663eqtrd 2784 . 2 (𝜑 → (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
68 uncom 4181 . . . . . 6 ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1)))
6968a1i 11 . . . . 5 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
7069uneq1d 4190 . . . 4 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}))
7165uneq2d 4191 . . . . . 6 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}))
7271eqcomd 2746 . . . . 5 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
73 fz10 13605 . . . . . . . . . . . . . . 15 (1...0) = ∅
7473uneq1i 4187 . . . . . . . . . . . . . 14 ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1)))
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1))))
7675adantr 480 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = (∅ ∪ (1...(𝑀 − 1))))
77 uncom 4181 . . . . . . . . . . . . . . 15 ((1...(𝑀 − 1)) ∪ ∅) = (∅ ∪ (1...(𝑀 − 1)))
7877eqeq1i 2745 . . . . . . . . . . . . . 14 (((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1)) ↔ (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
7978imbi2i 336 . . . . . . . . . . . . 13 (((𝜑𝐼 = 𝑀) → ((1...(𝑀 − 1)) ∪ ∅) = (1...(𝑀 − 1))) ↔ ((𝜑𝐼 = 𝑀) → (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1))))
8036, 79mpbi 230 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (∅ ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
8176, 80eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = (1...(𝑀 − 1)))
8281eqcomd 2746 . . . . . . . . . 10 ((𝜑𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...0) ∪ (1...(𝑀 − 1))))
83 oveq2 7456 . . . . . . . . . . . . . . 15 (𝐼 = 𝑀 → (𝑀𝐼) = (𝑀𝑀))
8483adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → (𝑀𝐼) = (𝑀𝑀))
8518recnd 11318 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℂ)
8685subidd 11635 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑀) = 0)
8786adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → (𝑀𝑀) = 0)
8884, 87eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝐼 = 𝑀) → (𝑀𝐼) = 0)
8988oveq2d 7464 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (1...(𝑀𝐼)) = (1...0))
9083oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝐼 = 𝑀 → ((𝑀𝐼) + 1) = ((𝑀𝑀) + 1))
9190adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = ((𝑀𝑀) + 1))
9287oveq1d 7463 . . . . . . . . . . . . . . 15 ((𝜑𝐼 = 𝑀) → ((𝑀𝑀) + 1) = (0 + 1))
9391, 92eqtrd 2780 . . . . . . . . . . . . . 14 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = (0 + 1))
94 1e0p1 12800 . . . . . . . . . . . . . 14 1 = (0 + 1)
9593, 94eqtr4di 2798 . . . . . . . . . . . . 13 ((𝜑𝐼 = 𝑀) → ((𝑀𝐼) + 1) = 1)
9695oveq1d 7463 . . . . . . . . . . . 12 ((𝜑𝐼 = 𝑀) → (((𝑀𝐼) + 1)...(𝑀 − 1)) = (1...(𝑀 − 1)))
9789, 96uneq12d 4192 . . . . . . . . . . 11 ((𝜑𝐼 = 𝑀) → ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) = ((1...0) ∪ (1...(𝑀 − 1))))
9897eqcomd 2746 . . . . . . . . . 10 ((𝜑𝐼 = 𝑀) → ((1...0) ∪ (1...(𝑀 − 1))) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
9982, 98eqtrd 2780 . . . . . . . . 9 ((𝜑𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
10042, 45zsubcld 12752 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ∈ ℤ)
10153adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝐼 ∈ ℝ)
10218adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 𝑀 ∈ ℝ)
103 1red 11291 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ∈ ℝ)
104101, 102, 103, 60lesubd 11894 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → 1 ≤ (𝑀𝐼))
105103, 101, 102, 47lesub2dd 11907 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ≤ (𝑀 − 1))
10641, 43, 100, 104, 105elfzd 13575 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (𝑀𝐼) ∈ (1...(𝑀 − 1)))
107 fzsplit 13610 . . . . . . . . . 10 ((𝑀𝐼) ∈ (1...(𝑀 − 1)) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
108106, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐼 = 𝑀) → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
10999, 108pm2.61dan 812 . . . . . . . 8 (𝜑 → (1...(𝑀 − 1)) = ((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))))
110109uneq1d 4190 . . . . . . 7 (𝜑 → ((1...(𝑀 − 1)) ∪ (𝑀...𝑀)) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
11121, 110eqtrd 2780 . . . . . 6 (𝜑 → (1...𝑀) = (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)))
112111eqcomd 2746 . . . . 5 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ (𝑀...𝑀)) = (1...𝑀))
11372, 112eqtrd 2780 . . . 4 (𝜑 → (((1...(𝑀𝐼)) ∪ (((𝑀𝐼) + 1)...(𝑀 − 1))) ∪ {𝑀}) = (1...𝑀))
11470, 113eqtrd 2780 . . 3 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}) = (1...𝑀))
115114eqcomd 2746 . 2 (𝜑 → (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}))
11614, 67, 1153jca 1128 1 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cun 3974  cin 3975  c0 4352  {csn 4648   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568
This theorem is referenced by:  metakunt25  42186
  Copyright terms: Public domain W3C validator