MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiprm Structured version   Visualization version   GIF version

Theorem ppiprm 27037
Description: The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))

Proof of Theorem ppiprm
StepHypRef Expression
1 fzfid 13914 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...𝐴) ∈ Fin)
2 inss1 4196 . . . 4 ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)
3 ssfi 9114 . . . 4 (((2...𝐴) ∈ Fin ∧ ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)) → ((2...𝐴) ∩ ℙ) ∈ Fin)
41, 2, 3sylancl 586 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ∈ Fin)
5 zre 12509 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65adantr 480 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
76ltp1d 12089 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
8 peano2z 12550 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
98adantr 480 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
109zred 12614 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
116, 10ltnled 11297 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
127, 11mpbid 232 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
13 elinel1 4160 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
14 elfzle2 13465 . . . . 5 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
1513, 14syl 17 . . . 4 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
1612, 15nsyl 140 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
17 ovex 7402 . . . 4 (𝐴 + 1) ∈ V
18 hashunsng 14333 . . . 4 ((𝐴 + 1) ∈ V → ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1)))
1917, 18ax-mp 5 . . 3 ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
204, 16, 19syl2anc 584 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
21 ppival2 27014 . . . 4 ((𝐴 + 1) ∈ ℤ → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
229, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
23 2z 12541 . . . . . . . 8 2 ∈ ℤ
24 zcn 12510 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
26 ax-1cn 11102 . . . . . . . . . . 11 1 ∈ ℂ
27 pncan 11403 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
2825, 26, 27sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
29 prmuz2 16642 . . . . . . . . . . . 12 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3029adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
31 uz2m1nn 12858 . . . . . . . . . . 11 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3230, 31syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3328, 32eqeltrrd 2829 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
34 nnuz 12812 . . . . . . . . . 10 ℕ = (ℤ‘1)
35 2m1e1 12283 . . . . . . . . . . 11 (2 − 1) = 1
3635fveq2i 6843 . . . . . . . . . 10 (ℤ‘(2 − 1)) = (ℤ‘1)
3734, 36eqtr4i 2755 . . . . . . . . 9 ℕ = (ℤ‘(2 − 1))
3833, 37eleqtrdi 2838 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
39 fzsuc2 13519 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4023, 38, 39sylancr 587 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4140ineq1d 4178 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
42 indir 4245 . . . . . 6 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4341, 42eqtrdi 2780 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
44 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4544snssd 4769 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
46 dfss2 3929 . . . . . . 7 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4745, 46sylib 218 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4847uneq2d 4127 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
4943, 48eqtrd 2764 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5049fveq2d 6844 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘((2...(𝐴 + 1)) ∩ ℙ)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
5122, 50eqtrd 2764 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
52 ppival2 27014 . . . 4 (𝐴 ∈ ℤ → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5352adantr 480 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5453oveq1d 7384 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((π𝐴) + 1) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
5520, 51, 543eqtr4d 2774 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  cin 3910  wss 3911  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  2c2 12217  cz 12505  cuz 12769  ...cfz 13444  chash 14271  cprime 16617  πcppi 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-ppi 26986
This theorem is referenced by:  ppip1le  27047  ppi1i  27054  bposlem5  27175
  Copyright terms: Public domain W3C validator