MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiprm Structured version   Visualization version   GIF version

Theorem ppiprm 27101
Description: The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))

Proof of Theorem ppiprm
StepHypRef Expression
1 fzfid 13976 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...𝐴) ∈ Fin)
2 inss1 4229 . . . 4 ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)
3 ssfi 9202 . . . 4 (((2...𝐴) ∈ Fin ∧ ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)) → ((2...𝐴) ∩ ℙ) ∈ Fin)
41, 2, 3sylancl 584 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ∈ Fin)
5 zre 12598 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65adantr 479 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
76ltp1d 12180 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
8 peano2z 12639 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
98adantr 479 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
109zred 12702 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
116, 10ltnled 11397 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
127, 11mpbid 231 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
13 elinel1 4195 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
14 elfzle2 13543 . . . . 5 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
1513, 14syl 17 . . . 4 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
1612, 15nsyl 140 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
17 ovex 7457 . . . 4 (𝐴 + 1) ∈ V
18 hashunsng 14389 . . . 4 ((𝐴 + 1) ∈ V → ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1)))
1917, 18ax-mp 5 . . 3 ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
204, 16, 19syl2anc 582 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
21 ppival2 27078 . . . 4 ((𝐴 + 1) ∈ ℤ → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
229, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
23 2z 12630 . . . . . . . 8 2 ∈ ℤ
24 zcn 12599 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 479 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
26 ax-1cn 11202 . . . . . . . . . . 11 1 ∈ ℂ
27 pncan 11502 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
2825, 26, 27sylancl 584 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
29 prmuz2 16672 . . . . . . . . . . . 12 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3029adantl 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
31 uz2m1nn 12943 . . . . . . . . . . 11 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3230, 31syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3328, 32eqeltrrd 2829 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
34 nnuz 12901 . . . . . . . . . 10 ℕ = (ℤ‘1)
35 2m1e1 12374 . . . . . . . . . . 11 (2 − 1) = 1
3635fveq2i 6903 . . . . . . . . . 10 (ℤ‘(2 − 1)) = (ℤ‘1)
3734, 36eqtr4i 2758 . . . . . . . . 9 ℕ = (ℤ‘(2 − 1))
3833, 37eleqtrdi 2838 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
39 fzsuc2 13597 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4023, 38, 39sylancr 585 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4140ineq1d 4211 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
42 indir 4276 . . . . . 6 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4341, 42eqtrdi 2783 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
44 simpr 483 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4544snssd 4815 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
46 df-ss 3964 . . . . . . 7 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4745, 46sylib 217 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4847uneq2d 4162 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
4943, 48eqtrd 2767 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5049fveq2d 6904 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘((2...(𝐴 + 1)) ∩ ℙ)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
5122, 50eqtrd 2767 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
52 ppival2 27078 . . . 4 (𝐴 ∈ ℤ → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5352adantr 479 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5453oveq1d 7439 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((π𝐴) + 1) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
5520, 51, 543eqtr4d 2777 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3471  cun 3945  cin 3946  wss 3947  {csn 4630   class class class wbr 5150  cfv 6551  (class class class)co 7424  Fincfn 8968  cc 11142  cr 11143  1c1 11145   + caddc 11147   < clt 11284  cle 11285  cmin 11480  cn 12248  2c2 12303  cz 12594  cuz 12858  ...cfz 13522  chash 14327  cprime 16647  πcppi 27044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-oadd 8495  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-dju 9930  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-icc 13369  df-fz 13523  df-fl 13795  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-dvds 16237  df-prm 16648  df-ppi 27050
This theorem is referenced by:  ppip1le  27111  ppi1i  27118  bposlem5  27239
  Copyright terms: Public domain W3C validator