MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiprm Structured version   Visualization version   GIF version

Theorem ppiprm 25720
Description: The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))

Proof of Theorem ppiprm
StepHypRef Expression
1 fzfid 13333 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...𝐴) ∈ Fin)
2 inss1 4203 . . . 4 ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)
3 ssfi 8730 . . . 4 (((2...𝐴) ∈ Fin ∧ ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)) → ((2...𝐴) ∩ ℙ) ∈ Fin)
41, 2, 3sylancl 588 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ∈ Fin)
5 zre 11977 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65adantr 483 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
76ltp1d 11562 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
8 peano2z 12015 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
98adantr 483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
109zred 12079 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
116, 10ltnled 10779 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
127, 11mpbid 234 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
13 elinel1 4170 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
14 elfzle2 12903 . . . . 5 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
1513, 14syl 17 . . . 4 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
1612, 15nsyl 142 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
17 ovex 7181 . . . 4 (𝐴 + 1) ∈ V
18 hashunsng 13745 . . . 4 ((𝐴 + 1) ∈ V → ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1)))
1917, 18ax-mp 5 . . 3 ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
204, 16, 19syl2anc 586 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
21 ppival2 25697 . . . 4 ((𝐴 + 1) ∈ ℤ → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
229, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
23 2z 12006 . . . . . . . 8 2 ∈ ℤ
24 zcn 11978 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
26 ax-1cn 10587 . . . . . . . . . . 11 1 ∈ ℂ
27 pncan 10884 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
2825, 26, 27sylancl 588 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
29 prmuz2 16032 . . . . . . . . . . . 12 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3029adantl 484 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
31 uz2m1nn 12315 . . . . . . . . . . 11 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3230, 31syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3328, 32eqeltrrd 2912 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
34 nnuz 12273 . . . . . . . . . 10 ℕ = (ℤ‘1)
35 2m1e1 11755 . . . . . . . . . . 11 (2 − 1) = 1
3635fveq2i 6666 . . . . . . . . . 10 (ℤ‘(2 − 1)) = (ℤ‘1)
3734, 36eqtr4i 2845 . . . . . . . . 9 ℕ = (ℤ‘(2 − 1))
3833, 37eleqtrdi 2921 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
39 fzsuc2 12957 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4023, 38, 39sylancr 589 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4140ineq1d 4186 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
42 indir 4250 . . . . . 6 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4341, 42syl6eq 2870 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
44 simpr 487 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4544snssd 4734 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
46 df-ss 3950 . . . . . . 7 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4745, 46sylib 220 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4847uneq2d 4137 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
4943, 48eqtrd 2854 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5049fveq2d 6667 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘((2...(𝐴 + 1)) ∩ ℙ)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
5122, 50eqtrd 2854 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
52 ppival2 25697 . . . 4 (𝐴 ∈ ℤ → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5352adantr 483 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5453oveq1d 7163 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((π𝐴) + 1) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
5520, 51, 543eqtr4d 2864 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1530  wcel 2107  Vcvv 3493  cun 3932  cin 3933  wss 3934  {csn 4559   class class class wbr 5057  cfv 6348  (class class class)co 7148  Fincfn 8501  cc 10527  cr 10528  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862  cn 11630  2c2 11684  cz 11973  cuz 12235  ...cfz 12884  chash 13682  cprime 16007  πcppi 25663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-icc 12737  df-fz 12885  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008  df-ppi 25669
This theorem is referenced by:  ppip1le  25730  ppi1i  25737  bposlem5  25856
  Copyright terms: Public domain W3C validator