MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiprm Structured version   Visualization version   GIF version

Theorem ppiprm 27128
Description: The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))

Proof of Theorem ppiprm
StepHypRef Expression
1 fzfid 13974 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...𝐴) ∈ Fin)
2 inss1 4227 . . . 4 ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)
3 ssfi 9198 . . . 4 (((2...𝐴) ∈ Fin ∧ ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)) → ((2...𝐴) ∩ ℙ) ∈ Fin)
41, 2, 3sylancl 584 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ∈ Fin)
5 zre 12595 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65adantr 479 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
76ltp1d 12177 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
8 peano2z 12636 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
98adantr 479 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
109zred 12699 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
116, 10ltnled 11393 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
127, 11mpbid 231 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
13 elinel1 4193 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
14 elfzle2 13540 . . . . 5 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
1513, 14syl 17 . . . 4 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
1612, 15nsyl 140 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
17 ovex 7452 . . . 4 (𝐴 + 1) ∈ V
18 hashunsng 14387 . . . 4 ((𝐴 + 1) ∈ V → ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1)))
1917, 18ax-mp 5 . . 3 ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
204, 16, 19syl2anc 582 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
21 ppival2 27105 . . . 4 ((𝐴 + 1) ∈ ℤ → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
229, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
23 2z 12627 . . . . . . . 8 2 ∈ ℤ
24 zcn 12596 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 479 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
26 ax-1cn 11198 . . . . . . . . . . 11 1 ∈ ℂ
27 pncan 11498 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
2825, 26, 27sylancl 584 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
29 prmuz2 16670 . . . . . . . . . . . 12 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3029adantl 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
31 uz2m1nn 12940 . . . . . . . . . . 11 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3230, 31syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3328, 32eqeltrrd 2826 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
34 nnuz 12898 . . . . . . . . . 10 ℕ = (ℤ‘1)
35 2m1e1 12371 . . . . . . . . . . 11 (2 − 1) = 1
3635fveq2i 6899 . . . . . . . . . 10 (ℤ‘(2 − 1)) = (ℤ‘1)
3734, 36eqtr4i 2756 . . . . . . . . 9 ℕ = (ℤ‘(2 − 1))
3833, 37eleqtrdi 2835 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
39 fzsuc2 13594 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4023, 38, 39sylancr 585 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4140ineq1d 4209 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
42 indir 4274 . . . . . 6 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4341, 42eqtrdi 2781 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
44 simpr 483 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4544snssd 4814 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
46 dfss2 3962 . . . . . . 7 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4745, 46sylib 217 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4847uneq2d 4160 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
4943, 48eqtrd 2765 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5049fveq2d 6900 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (♯‘((2...(𝐴 + 1)) ∩ ℙ)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
5122, 50eqtrd 2765 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
52 ppival2 27105 . . . 4 (𝐴 ∈ ℤ → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5352adantr 479 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
5453oveq1d 7434 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((π𝐴) + 1) = ((♯‘((2...𝐴) ∩ ℙ)) + 1))
5520, 51, 543eqtr4d 2775 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cun 3942  cin 3943  wss 3944  {csn 4630   class class class wbr 5149  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476  cn 12245  2c2 12300  cz 12591  cuz 12855  ...cfz 13519  chash 14325  cprime 16645  πcppi 27071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-icc 13366  df-fz 13520  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235  df-prm 16646  df-ppi 27077
This theorem is referenced by:  ppip1le  27138  ppi1i  27145  bposlem5  27266
  Copyright terms: Public domain W3C validator