| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponunii | ⊢ 𝐵 = ∪ 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
| 2 | toponuni 22834 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 TopOnctopon 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22831 |
| This theorem is referenced by: toponrestid 22841 indisuni 22923 indistpsx 22930 letopuni 23127 dfac14 23538 unicntop 24706 sszcld 24739 reperflem 24740 cnperf 24742 iiuni 24807 abscncfALT 24851 cncfcnvcn 24852 cnheiborlem 24886 cnheibor 24887 cnllycmp 24888 bndth 24890 mbfimaopnlem 25589 limcnlp 25812 limcflflem 25814 limcflf 25815 limcmo 25816 limcres 25820 limccnp 25825 limccnp2 25826 perfdvf 25837 recnperf 25839 dvcnp2 25854 dvcnp2OLD 25855 dvaddbr 25873 dvmulbr 25874 dvmulbrOLD 25875 dvcobr 25882 dvcobrOLD 25883 dvcnvlem 25913 lhop1lem 25951 taylthlem2 26315 taylthlem2OLD 26316 abelth 26384 cxpcn3 26691 lgamucov 26981 ftalem3 27018 blocni 30784 ipasslem8 30816 ubthlem1 30849 tpr2uni 33888 tpr2rico 33895 mndpluscn 33909 raddcn 33912 cvxsconn 35223 cvmlift2lem11 35293 ivthALT 36316 poimir 37640 broucube 37641 ftc1cnnc 37679 dvasin 37691 dvacos 37692 dvreasin 37693 dvreacos 37694 areacirclem2 37696 reheibor 37826 islptre 45610 dirkercncf 46098 fourierdlem62 46159 |
| Copyright terms: Public domain | W3C validator |