Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponunii | ⊢ 𝐵 = ∪ 𝐽 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
2 | toponuni 22072 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 ∪ cuni 4840 ‘cfv 6437 TopOnctopon 22068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 df-topon 22069 |
This theorem is referenced by: toponrestid 22079 indisuni 22162 indistpsx 22169 letopuni 22367 dfac14 22778 unicntop 23958 sszcld 23989 reperflem 23990 cnperf 23992 iiuni 24053 abscncfALT 24096 cncfcnvcn 24097 cnheiborlem 24126 cnheibor 24127 cnllycmp 24128 bndth 24130 mbfimaopnlem 24828 limcnlp 25051 limcflflem 25053 limcflf 25054 limcmo 25055 limcres 25059 limccnp 25064 limccnp2 25065 perfdvf 25076 recnperf 25078 dvcnp2 25093 dvaddbr 25111 dvmulbr 25112 dvcobr 25119 dvcnvlem 25149 lhop1lem 25186 taylthlem2 25542 abelth 25609 cxpcn3 25910 lgamucov 26196 ftalem3 26233 blocni 29176 ipasslem8 29208 ubthlem1 29241 tpr2uni 31864 tpr2rico 31871 mndpluscn 31885 rmulccn 31887 raddcn 31888 cvxsconn 33214 cvmlift2lem11 33284 ivthALT 34533 poimir 35819 broucube 35820 dvtanlem 35835 ftc1cnnc 35858 dvasin 35870 dvacos 35871 dvreasin 35872 dvreacos 35873 areacirclem2 35875 reheibor 36006 islptre 43167 dirkercncf 43655 fourierdlem62 43716 |
Copyright terms: Public domain | W3C validator |