| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponunii | ⊢ 𝐵 = ∪ 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
| 2 | toponuni 22799 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 ‘cfv 6482 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-topon 22796 |
| This theorem is referenced by: toponrestid 22806 indisuni 22888 indistpsx 22895 letopuni 23092 dfac14 23503 unicntop 24671 sszcld 24704 reperflem 24705 cnperf 24707 iiuni 24772 abscncfALT 24816 cncfcnvcn 24817 cnheiborlem 24851 cnheibor 24852 cnllycmp 24853 bndth 24855 mbfimaopnlem 25554 limcnlp 25777 limcflflem 25779 limcflf 25780 limcmo 25781 limcres 25785 limccnp 25790 limccnp2 25791 perfdvf 25802 recnperf 25804 dvcnp2 25819 dvcnp2OLD 25820 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 dvcobr 25847 dvcobrOLD 25848 dvcnvlem 25878 lhop1lem 25916 taylthlem2 26280 taylthlem2OLD 26281 abelth 26349 cxpcn3 26656 lgamucov 26946 ftalem3 26983 blocni 30749 ipasslem8 30781 ubthlem1 30814 tpr2uni 33872 tpr2rico 33879 mndpluscn 33893 raddcn 33896 cvxsconn 35220 cvmlift2lem11 35290 ivthALT 36313 poimir 37637 broucube 37638 ftc1cnnc 37676 dvasin 37688 dvacos 37689 dvreasin 37690 dvreacos 37691 areacirclem2 37693 reheibor 37823 islptre 45604 dirkercncf 46092 fourierdlem62 46153 |
| Copyright terms: Public domain | W3C validator |