| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponunii | ⊢ 𝐵 = ∪ 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
| 2 | toponuni 22857 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4888 ‘cfv 6536 TopOnctopon 22853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-topon 22854 |
| This theorem is referenced by: toponrestid 22864 indisuni 22946 indistpsx 22953 letopuni 23150 dfac14 23561 unicntop 24729 sszcld 24762 reperflem 24763 cnperf 24765 iiuni 24830 abscncfALT 24874 cncfcnvcn 24875 cnheiborlem 24909 cnheibor 24910 cnllycmp 24911 bndth 24913 mbfimaopnlem 25613 limcnlp 25836 limcflflem 25838 limcflf 25839 limcmo 25840 limcres 25844 limccnp 25849 limccnp2 25850 perfdvf 25861 recnperf 25863 dvcnp2 25878 dvcnp2OLD 25879 dvaddbr 25897 dvmulbr 25898 dvmulbrOLD 25899 dvcobr 25906 dvcobrOLD 25907 dvcnvlem 25937 lhop1lem 25975 taylthlem2 26339 taylthlem2OLD 26340 abelth 26408 cxpcn3 26715 lgamucov 27005 ftalem3 27042 blocni 30791 ipasslem8 30823 ubthlem1 30856 tpr2uni 33941 tpr2rico 33948 mndpluscn 33962 raddcn 33965 cvxsconn 35270 cvmlift2lem11 35340 ivthALT 36358 poimir 37682 broucube 37683 ftc1cnnc 37721 dvasin 37733 dvacos 37734 dvreasin 37735 dvreacos 37736 areacirclem2 37738 reheibor 37868 islptre 45628 dirkercncf 46116 fourierdlem62 46177 |
| Copyright terms: Public domain | W3C validator |