MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponunii Structured version   Visualization version   GIF version

Theorem toponunii 21973
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1 𝐽 ∈ (TopOn‘𝐵)
Assertion
Ref Expression
toponunii 𝐵 = 𝐽

Proof of Theorem toponunii
StepHypRef Expression
1 topontopi.1 . 2 𝐽 ∈ (TopOn‘𝐵)
2 toponuni 21971 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
31, 2ax-mp 5 1 𝐵 = 𝐽
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108   cuni 4836  cfv 6418  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topon 21968
This theorem is referenced by:  toponrestid  21978  indisuni  22061  indistpsx  22068  letopuni  22266  dfac14  22677  unicntop  23855  sszcld  23886  reperflem  23887  cnperf  23889  iiuni  23950  abscncfALT  23993  cncfcnvcn  23994  cnheiborlem  24023  cnheibor  24024  cnllycmp  24025  bndth  24027  mbfimaopnlem  24724  limcnlp  24947  limcflflem  24949  limcflf  24950  limcmo  24951  limcres  24955  limccnp  24960  limccnp2  24961  perfdvf  24972  recnperf  24974  dvcnp2  24989  dvaddbr  25007  dvmulbr  25008  dvcobr  25015  dvcnvlem  25045  lhop1lem  25082  taylthlem2  25438  abelth  25505  cxpcn3  25806  lgamucov  26092  ftalem3  26129  blocni  29068  ipasslem8  29100  ubthlem1  29133  tpr2uni  31757  tpr2rico  31764  mndpluscn  31778  rmulccn  31780  raddcn  31781  cvxsconn  33105  cvmlift2lem11  33175  ivthALT  34451  poimir  35737  broucube  35738  dvtanlem  35753  ftc1cnnc  35776  dvasin  35788  dvacos  35789  dvreasin  35790  dvreacos  35791  areacirclem2  35793  reheibor  35924  islptre  43050  dirkercncf  43538  fourierdlem62  43599
  Copyright terms: Public domain W3C validator