Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponunii | ⊢ 𝐵 = ∪ 𝐽 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
2 | toponuni 21971 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topon 21968 |
This theorem is referenced by: toponrestid 21978 indisuni 22061 indistpsx 22068 letopuni 22266 dfac14 22677 unicntop 23855 sszcld 23886 reperflem 23887 cnperf 23889 iiuni 23950 abscncfALT 23993 cncfcnvcn 23994 cnheiborlem 24023 cnheibor 24024 cnllycmp 24025 bndth 24027 mbfimaopnlem 24724 limcnlp 24947 limcflflem 24949 limcflf 24950 limcmo 24951 limcres 24955 limccnp 24960 limccnp2 24961 perfdvf 24972 recnperf 24974 dvcnp2 24989 dvaddbr 25007 dvmulbr 25008 dvcobr 25015 dvcnvlem 25045 lhop1lem 25082 taylthlem2 25438 abelth 25505 cxpcn3 25806 lgamucov 26092 ftalem3 26129 blocni 29068 ipasslem8 29100 ubthlem1 29133 tpr2uni 31757 tpr2rico 31764 mndpluscn 31778 rmulccn 31780 raddcn 31781 cvxsconn 33105 cvmlift2lem11 33175 ivthALT 34451 poimir 35737 broucube 35738 dvtanlem 35753 ftc1cnnc 35776 dvasin 35788 dvacos 35789 dvreasin 35790 dvreacos 35791 areacirclem2 35793 reheibor 35924 islptre 43050 dirkercncf 43538 fourierdlem62 43599 |
Copyright terms: Public domain | W3C validator |