![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponunii | ⊢ 𝐵 = ∪ 𝐽 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
2 | toponuni 22941 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6573 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topon 22938 |
This theorem is referenced by: toponrestid 22948 indisuni 23031 indistpsx 23038 letopuni 23236 dfac14 23647 unicntop 24827 sszcld 24858 reperflem 24859 cnperf 24861 iiuni 24926 abscncfALT 24970 cncfcnvcn 24971 cnheiborlem 25005 cnheibor 25006 cnllycmp 25007 bndth 25009 mbfimaopnlem 25709 limcnlp 25933 limcflflem 25935 limcflf 25936 limcmo 25937 limcres 25941 limccnp 25946 limccnp2 25947 perfdvf 25958 recnperf 25960 dvcnp2 25975 dvcnp2OLD 25976 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 dvcobr 26003 dvcobrOLD 26004 dvcnvlem 26034 lhop1lem 26072 taylthlem2 26434 taylthlem2OLD 26435 abelth 26503 cxpcn3 26809 lgamucov 27099 ftalem3 27136 blocni 30837 ipasslem8 30869 ubthlem1 30902 tpr2uni 33851 tpr2rico 33858 mndpluscn 33872 raddcn 33875 cvxsconn 35211 cvmlift2lem11 35281 ivthALT 36301 poimir 37613 broucube 37614 dvtanlem 37629 ftc1cnnc 37652 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 areacirclem2 37669 reheibor 37799 islptre 45540 dirkercncf 46028 fourierdlem62 46089 |
Copyright terms: Public domain | W3C validator |