| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponunii | ⊢ 𝐵 = ∪ 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
| 2 | toponuni 22777 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 TopOnctopon 22773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22774 |
| This theorem is referenced by: toponrestid 22784 indisuni 22866 indistpsx 22873 letopuni 23070 dfac14 23481 unicntop 24649 sszcld 24682 reperflem 24683 cnperf 24685 iiuni 24750 abscncfALT 24794 cncfcnvcn 24795 cnheiborlem 24829 cnheibor 24830 cnllycmp 24831 bndth 24833 mbfimaopnlem 25532 limcnlp 25755 limcflflem 25757 limcflf 25758 limcmo 25759 limcres 25763 limccnp 25768 limccnp2 25769 perfdvf 25780 recnperf 25782 dvcnp2 25797 dvcnp2OLD 25798 dvaddbr 25816 dvmulbr 25817 dvmulbrOLD 25818 dvcobr 25825 dvcobrOLD 25826 dvcnvlem 25856 lhop1lem 25894 taylthlem2 26258 taylthlem2OLD 26259 abelth 26327 cxpcn3 26634 lgamucov 26924 ftalem3 26961 blocni 30707 ipasslem8 30739 ubthlem1 30772 tpr2uni 33868 tpr2rico 33875 mndpluscn 33889 raddcn 33892 cvxsconn 35203 cvmlift2lem11 35273 ivthALT 36296 poimir 37620 broucube 37621 ftc1cnnc 37659 dvasin 37671 dvacos 37672 dvreasin 37673 dvreacos 37674 areacirclem2 37676 reheibor 37806 islptre 45590 dirkercncf 46078 fourierdlem62 46139 |
| Copyright terms: Public domain | W3C validator |