| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponunii | ⊢ 𝐵 = ∪ 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
| 2 | toponuni 22829 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 ‘cfv 6481 TopOnctopon 22825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22826 |
| This theorem is referenced by: toponrestid 22836 indisuni 22918 indistpsx 22925 letopuni 23122 dfac14 23533 unicntop 24700 sszcld 24733 reperflem 24734 cnperf 24736 iiuni 24801 abscncfALT 24845 cncfcnvcn 24846 cnheiborlem 24880 cnheibor 24881 cnllycmp 24882 bndth 24884 mbfimaopnlem 25583 limcnlp 25806 limcflflem 25808 limcflf 25809 limcmo 25810 limcres 25814 limccnp 25819 limccnp2 25820 perfdvf 25831 recnperf 25833 dvcnp2 25848 dvcnp2OLD 25849 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 dvcobr 25876 dvcobrOLD 25877 dvcnvlem 25907 lhop1lem 25945 taylthlem2 26309 taylthlem2OLD 26310 abelth 26378 cxpcn3 26685 lgamucov 26975 ftalem3 27012 blocni 30785 ipasslem8 30817 ubthlem1 30850 tpr2uni 33918 tpr2rico 33925 mndpluscn 33939 raddcn 33942 cvxsconn 35287 cvmlift2lem11 35357 ivthALT 36379 poimir 37703 broucube 37704 ftc1cnnc 37742 dvasin 37754 dvacos 37755 dvreasin 37756 dvreacos 37757 areacirclem2 37759 reheibor 37889 islptre 45729 dirkercncf 46215 fourierdlem62 46276 |
| Copyright terms: Public domain | W3C validator |