![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponunii | ⊢ 𝐵 = ∪ 𝐽 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
2 | toponuni 21130 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ∪ cuni 4673 ‘cfv 6137 TopOnctopon 21126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-iota 6101 df-fun 6139 df-fv 6145 df-topon 21127 |
This theorem is referenced by: toponrestid 21137 indisuni 21219 indistpsx 21226 letopuni 21423 dfac14 21834 unicntop 23001 sszcld 23032 reperflem 23033 cnperf 23035 iiuni 23096 abscncfALT 23135 cncfcnvcn 23136 cnheiborlem 23165 cnheibor 23166 cnllycmp 23167 bndth 23169 csscld 23459 clsocv 23460 cncmet 23532 resscdrg 23568 mbfimaopnlem 23863 limcnlp 24083 limcflflem 24085 limcflf 24086 limcmo 24087 limcres 24091 limccnp 24096 limccnp2 24097 limciun 24099 perfdvf 24108 recnperf 24110 dvidlem 24120 dvcnp2 24124 dvnres 24135 dvaddbr 24142 dvmulbr 24143 dvcobr 24150 dvcjbr 24153 dvrec 24159 dvcnvlem 24180 dvexp3 24182 dveflem 24183 lhop1lem 24217 dvply1 24480 taylthlem2 24569 psercn 24621 abelth 24636 logdmopn 24836 cxpcn3 24933 efrlim 25152 lgamucov 25220 lgamucov2 25221 ftalem3 25257 blocni 28236 ipasslem8 28268 ubthlem1 28302 tpr2uni 30553 tpr2rico 30560 mndpluscn 30574 rmulccn 30576 raddcn 30577 cvxsconn 31828 cvmlift2lem11 31898 ivthALT 32922 poimir 34073 broucube 34074 dvtanlem 34089 ftc1cnnc 34114 dvasin 34126 dvacos 34127 dvreasin 34128 dvreacos 34129 areacirclem2 34131 reheibor 34267 islptre 40769 dirkercncf 41261 fourierdlem62 41322 |
Copyright terms: Public domain | W3C validator |