| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponunii | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponunii | ⊢ 𝐵 = ∪ 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
| 2 | toponuni 22801 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 = ∪ 𝐽 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topon 22798 |
| This theorem is referenced by: toponrestid 22808 indisuni 22890 indistpsx 22897 letopuni 23094 dfac14 23505 unicntop 24673 sszcld 24706 reperflem 24707 cnperf 24709 iiuni 24774 abscncfALT 24818 cncfcnvcn 24819 cnheiborlem 24853 cnheibor 24854 cnllycmp 24855 bndth 24857 mbfimaopnlem 25556 limcnlp 25779 limcflflem 25781 limcflf 25782 limcmo 25783 limcres 25787 limccnp 25792 limccnp2 25793 perfdvf 25804 recnperf 25806 dvcnp2 25821 dvcnp2OLD 25822 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvcobr 25849 dvcobrOLD 25850 dvcnvlem 25880 lhop1lem 25918 taylthlem2 26282 taylthlem2OLD 26283 abelth 26351 cxpcn3 26658 lgamucov 26948 ftalem3 26985 blocni 30734 ipasslem8 30766 ubthlem1 30799 tpr2uni 33895 tpr2rico 33902 mndpluscn 33916 raddcn 33919 cvxsconn 35230 cvmlift2lem11 35300 ivthALT 36323 poimir 37647 broucube 37648 ftc1cnnc 37686 dvasin 37698 dvacos 37699 dvreasin 37700 dvreacos 37701 areacirclem2 37703 reheibor 37833 islptre 45617 dirkercncf 46105 fourierdlem62 46166 |
| Copyright terms: Public domain | W3C validator |