MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponunii Structured version   Visualization version   GIF version

Theorem toponunii 22943
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1 𝐽 ∈ (TopOn‘𝐵)
Assertion
Ref Expression
toponunii 𝐵 = 𝐽

Proof of Theorem toponunii
StepHypRef Expression
1 topontopi.1 . 2 𝐽 ∈ (TopOn‘𝐵)
2 toponuni 22941 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
31, 2ax-mp 5 1 𝐵 = 𝐽
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108   cuni 4931  cfv 6573  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topon 22938
This theorem is referenced by:  toponrestid  22948  indisuni  23031  indistpsx  23038  letopuni  23236  dfac14  23647  unicntop  24827  sszcld  24858  reperflem  24859  cnperf  24861  iiuni  24926  abscncfALT  24970  cncfcnvcn  24971  cnheiborlem  25005  cnheibor  25006  cnllycmp  25007  bndth  25009  mbfimaopnlem  25709  limcnlp  25933  limcflflem  25935  limcflf  25936  limcmo  25937  limcres  25941  limccnp  25946  limccnp2  25947  perfdvf  25958  recnperf  25960  dvcnp2  25975  dvcnp2OLD  25976  dvaddbr  25994  dvmulbr  25995  dvmulbrOLD  25996  dvcobr  26003  dvcobrOLD  26004  dvcnvlem  26034  lhop1lem  26072  taylthlem2  26434  taylthlem2OLD  26435  abelth  26503  cxpcn3  26809  lgamucov  27099  ftalem3  27136  blocni  30837  ipasslem8  30869  ubthlem1  30902  tpr2uni  33851  tpr2rico  33858  mndpluscn  33872  raddcn  33875  cvxsconn  35211  cvmlift2lem11  35281  ivthALT  36301  poimir  37613  broucube  37614  dvtanlem  37629  ftc1cnnc  37652  dvasin  37664  dvacos  37665  dvreasin  37666  dvreacos  37667  areacirclem2  37669  reheibor  37799  islptre  45540  dirkercncf  46028  fourierdlem62  46089
  Copyright terms: Public domain W3C validator