| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version | ||
| Description: An unordered pair is finite. For a shorter proof using ax-un 7711, see prfiALT 9275. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2158, ax-un 7711. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 4729 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
| 2 | snfi 9014 | . . 3 ⊢ {𝐵} ∈ Fin | |
| 3 | 1, 2 | eqeltrdi 2836 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 4 | prprc2 4730 | . . 3 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) | |
| 5 | snfi 9014 | . . 3 ⊢ {𝐴} ∈ Fin | |
| 6 | 4, 5 | eqeltrdi 2836 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 7 | 2onn 8606 | . . . . . 6 ⊢ 2o ∈ ω | |
| 8 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
| 9 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ V) | |
| 10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 11 | 8, 9, 10 | enpr2d 9020 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | breq2 5111 | . . . . . . 7 ⊢ (𝑥 = 2o → ({𝐴, 𝐵} ≈ 𝑥 ↔ {𝐴, 𝐵} ≈ 2o)) | |
| 13 | 12 | rspcev 3588 | . . . . . 6 ⊢ ((2o ∈ ω ∧ {𝐴, 𝐵} ≈ 2o) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 14 | 7, 11, 13 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 15 | isfi 8947 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) | |
| 16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 17 | 16 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin)) |
| 18 | dfsn2 4602 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 19 | preq2 4698 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 20 | 18, 19 | eqtr2id 2777 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 21 | 20, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin) |
| 22 | 17, 21 | pm2.61d2 181 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ Fin) |
| 23 | 3, 6, 22 | ecase 1033 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 {csn 4589 {cpr 4591 class class class wbr 5107 ωcom 7842 2oc2o 8428 ≈ cen 8915 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-om 7843 df-1o 8434 df-2o 8435 df-en 8919 df-fin 8922 |
| This theorem is referenced by: tpfi 9276 fiint 9277 fiintOLD 9278 inelfi 9369 tskpr 10723 hashpw 14401 hashfun 14402 pr2pwpr 14444 hashtpg 14450 hash3tpexb 14459 sumpr 15714 lcmfpr 16597 prmreclem2 16888 acsfn2 17624 isdrs2 18267 efmnd2hash 18821 symg2hash 19322 psgnprfval 19451 gsumpr 19885 znidomb 21471 m2detleib 22518 ovolioo 25469 i1f1 25591 itgioo 25717 limcun 25796 aannenlem2 26237 wilthlem2 26979 perfectlem2 27141 upgrex 29019 ex-hash 30382 prodpr 32751 linds2eq 33352 elrspunsn 33400 constrfin 33736 constrllcllem 33742 constrlccllem 33743 inelpisys 34144 coinfliplem 34470 coinflippv 34475 subfacp1lem1 35166 poimirlem9 37623 kelac2lem 43053 sumpair 45029 refsum2cnlem1 45031 climxlim2lem 45843 ibliooicc 45969 fourierdlem50 46154 fourierdlem51 46155 fourierdlem54 46158 fourierdlem70 46174 fourierdlem71 46175 fourierdlem76 46180 fourierdlem102 46206 fourierdlem103 46207 fourierdlem104 46208 fourierdlem114 46218 saluncl 46315 sge0pr 46392 meadjun 46460 omeunle 46514 perfectALTVlem2 47723 gpgorder 48050 zlmodzxzel 48343 ldepspr 48462 zlmodzxzldeplem2 48490 rrx2line 48729 2sphere 48738 |
| Copyright terms: Public domain | W3C validator |