| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version | ||
| Description: An unordered pair is finite. For a shorter proof using ax-un 7723, see prfiALT 9330. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2156, ax-un 7723. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 4738 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
| 2 | snfi 9051 | . . 3 ⊢ {𝐵} ∈ Fin | |
| 3 | 1, 2 | eqeltrdi 2841 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 4 | prprc2 4739 | . . 3 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) | |
| 5 | snfi 9051 | . . 3 ⊢ {𝐴} ∈ Fin | |
| 6 | 4, 5 | eqeltrdi 2841 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 7 | 2onn 8648 | . . . . . 6 ⊢ 2o ∈ ω | |
| 8 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
| 9 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ V) | |
| 10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 11 | 8, 9, 10 | enpr2d 9057 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | breq2 5120 | . . . . . . 7 ⊢ (𝑥 = 2o → ({𝐴, 𝐵} ≈ 𝑥 ↔ {𝐴, 𝐵} ≈ 2o)) | |
| 13 | 12 | rspcev 3599 | . . . . . 6 ⊢ ((2o ∈ ω ∧ {𝐴, 𝐵} ≈ 2o) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 14 | 7, 11, 13 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 15 | isfi 8984 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) | |
| 16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 17 | 16 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin)) |
| 18 | dfsn2 4612 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 19 | preq2 4707 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 20 | 18, 19 | eqtr2id 2782 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 21 | 20, 5 | eqeltrdi 2841 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin) |
| 22 | 17, 21 | pm2.61d2 181 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ Fin) |
| 23 | 3, 6, 22 | ecase 1033 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 Vcvv 3457 {csn 4599 {cpr 4601 class class class wbr 5116 ωcom 7855 2oc2o 8468 ≈ cen 8950 Fincfn 8953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-om 7856 df-1o 8474 df-2o 8475 df-en 8954 df-fin 8957 |
| This theorem is referenced by: tpfi 9331 fiint 9332 fiintOLD 9333 inelfi 9424 tskpr 10776 hashpw 14442 hashfun 14443 pr2pwpr 14485 hashtpg 14491 hash3tpexb 14500 sumpr 15751 lcmfpr 16631 prmreclem2 16922 acsfn2 17660 isdrs2 18303 efmnd2hash 18857 symg2hash 19358 psgnprfval 19487 gsumpr 19921 znidomb 21507 m2detleib 22554 ovolioo 25506 i1f1 25628 itgioo 25754 limcun 25833 aannenlem2 26274 wilthlem2 27015 perfectlem2 27177 upgrex 29003 ex-hash 30366 prodpr 32738 linds2eq 33314 elrspunsn 33362 constrfin 33696 constrllcllem 33702 constrlccllem 33703 inelpisys 34093 coinfliplem 34419 coinflippv 34424 subfacp1lem1 35122 poimirlem9 37574 kelac2lem 43013 sumpair 44986 refsum2cnlem1 44988 climxlim2lem 45804 ibliooicc 45930 fourierdlem50 46115 fourierdlem51 46116 fourierdlem54 46119 fourierdlem70 46135 fourierdlem71 46136 fourierdlem76 46141 fourierdlem102 46167 fourierdlem103 46168 fourierdlem104 46169 fourierdlem114 46179 saluncl 46276 sge0pr 46353 meadjun 46421 omeunle 46475 perfectALTVlem2 47654 gpgorder 47958 zlmodzxzel 48216 ldepspr 48335 zlmodzxzldeplem2 48363 rrx2line 48606 2sphere 48615 |
| Copyright terms: Public domain | W3C validator |