Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version |
Description: An unordered pair is finite. (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4570 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snfi 8817 | . . 3 ⊢ {𝐴} ∈ Fin | |
3 | snfi 8817 | . . 3 ⊢ {𝐵} ∈ Fin | |
4 | unfi 8937 | . . 3 ⊢ (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin) → ({𝐴} ∪ {𝐵}) ∈ Fin) | |
5 | 2, 3, 4 | mp2an 689 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ∈ Fin |
6 | 1, 5 | eqeltri 2837 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ∪ cun 3890 {csn 4567 {cpr 4569 Fincfn 8716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-om 7707 df-1o 8288 df-en 8717 df-fin 8720 |
This theorem is referenced by: tpfi 9068 fiint 9069 inelfi 9155 tskpr 10527 hashpw 14149 hashfun 14150 pr2pwpr 14191 hashtpg 14197 sumpr 15458 lcmfpr 16330 prmreclem2 16616 acsfn2 17370 isdrs2 18022 efmnd2hash 18531 symg2hash 18997 psgnprfval 19127 gsumpr 19554 znidomb 20767 m2detleib 21778 ovolioo 24730 i1f1 24852 itgioo 24978 limcun 25057 aannenlem2 25487 wilthlem2 26216 perfectlem2 26376 upgrex 27460 ex-hash 28813 prodpr 31136 linds2eq 31571 inelpisys 32118 coinfliplem 32441 coinflippv 32446 subfacp1lem1 33137 poimirlem9 35782 kelac2lem 40886 sumpair 42548 refsum2cnlem1 42550 climxlim2lem 43357 ibliooicc 43483 fourierdlem50 43668 fourierdlem51 43669 fourierdlem54 43672 fourierdlem70 43688 fourierdlem71 43689 fourierdlem76 43694 fourierdlem102 43720 fourierdlem103 43721 fourierdlem104 43722 fourierdlem114 43732 saluncl 43829 sge0pr 43903 meadjun 43971 omeunle 44025 perfectALTVlem2 45143 zlmodzxzel 45660 ldepspr 45783 zlmodzxzldeplem2 45811 rrx2line 46055 2sphere 46064 |
Copyright terms: Public domain | W3C validator |