Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version |
Description: An unordered pair is finite. (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4568 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snfi 8869 | . . 3 ⊢ {𝐴} ∈ Fin | |
3 | snfi 8869 | . . 3 ⊢ {𝐵} ∈ Fin | |
4 | unfi 8993 | . . 3 ⊢ (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin) → ({𝐴} ∪ {𝐵}) ∈ Fin) | |
5 | 2, 3, 4 | mp2an 690 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ∈ Fin |
6 | 1, 5 | eqeltri 2833 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 ∪ cun 3890 {csn 4565 {cpr 4567 Fincfn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-om 7745 df-1o 8328 df-en 8765 df-fin 8768 |
This theorem is referenced by: tpfi 9134 fiint 9135 inelfi 9221 tskpr 10572 hashpw 14196 hashfun 14197 pr2pwpr 14238 hashtpg 14244 sumpr 15505 lcmfpr 16377 prmreclem2 16663 acsfn2 17417 isdrs2 18069 efmnd2hash 18578 symg2hash 19044 psgnprfval 19174 gsumpr 19601 znidomb 20814 m2detleib 21825 ovolioo 24777 i1f1 24899 itgioo 25025 limcun 25104 aannenlem2 25534 wilthlem2 26263 perfectlem2 26423 upgrex 27507 ex-hash 28862 prodpr 31185 linds2eq 31620 inelpisys 32167 coinfliplem 32490 coinflippv 32495 subfacp1lem1 33186 poimirlem9 35830 kelac2lem 40927 sumpair 42616 refsum2cnlem1 42618 climxlim2lem 43435 ibliooicc 43561 fourierdlem50 43746 fourierdlem51 43747 fourierdlem54 43750 fourierdlem70 43766 fourierdlem71 43767 fourierdlem76 43772 fourierdlem102 43798 fourierdlem103 43799 fourierdlem104 43800 fourierdlem114 43810 saluncl 43907 sge0pr 43982 meadjun 44050 omeunle 44104 perfectALTVlem2 45232 zlmodzxzel 45749 ldepspr 45872 zlmodzxzldeplem2 45900 rrx2line 46144 2sphere 46153 |
Copyright terms: Public domain | W3C validator |