| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version | ||
| Description: An unordered pair is finite. For a shorter proof using ax-un 7668, see prfiALT 9209. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2160, ax-un 7668. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 4715 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
| 2 | snfi 8965 | . . 3 ⊢ {𝐵} ∈ Fin | |
| 3 | 1, 2 | eqeltrdi 2839 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 4 | prprc2 4716 | . . 3 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) | |
| 5 | snfi 8965 | . . 3 ⊢ {𝐴} ∈ Fin | |
| 6 | 4, 5 | eqeltrdi 2839 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 7 | 2onn 8557 | . . . . . 6 ⊢ 2o ∈ ω | |
| 8 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
| 9 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ V) | |
| 10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 11 | 8, 9, 10 | enpr2d 8970 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | breq2 5093 | . . . . . . 7 ⊢ (𝑥 = 2o → ({𝐴, 𝐵} ≈ 𝑥 ↔ {𝐴, 𝐵} ≈ 2o)) | |
| 13 | 12 | rspcev 3572 | . . . . . 6 ⊢ ((2o ∈ ω ∧ {𝐴, 𝐵} ≈ 2o) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 14 | 7, 11, 13 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 15 | isfi 8898 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) | |
| 16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 17 | 16 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin)) |
| 18 | dfsn2 4586 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 19 | preq2 4684 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 20 | 18, 19 | eqtr2id 2779 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 21 | 20, 5 | eqeltrdi 2839 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin) |
| 22 | 17, 21 | pm2.61d2 181 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ Fin) |
| 23 | 3, 6, 22 | ecase 1033 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 {csn 4573 {cpr 4575 class class class wbr 5089 ωcom 7796 2oc2o 8379 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-om 7797 df-1o 8385 df-2o 8386 df-en 8870 df-fin 8873 |
| This theorem is referenced by: tpfi 9210 fiint 9211 inelfi 9302 tskpr 10661 hashpw 14343 hashfun 14344 pr2pwpr 14386 hashtpg 14392 hash3tpexb 14401 sumpr 15655 lcmfpr 16538 prmreclem2 16829 acsfn2 17569 isdrs2 18212 efmnd2hash 18802 symg2hash 19304 psgnprfval 19433 gsumpr 19867 znidomb 21498 m2detleib 22546 ovolioo 25496 i1f1 25618 itgioo 25744 limcun 25823 aannenlem2 26264 wilthlem2 27006 perfectlem2 27168 upgrex 29070 ex-hash 30433 prodpr 32809 linds2eq 33346 elrspunsn 33394 constrfin 33759 constrllcllem 33765 constrlccllem 33766 inelpisys 34167 coinfliplem 34492 coinflippv 34497 subfacp1lem1 35223 poimirlem9 37679 kelac2lem 43167 sumpair 45142 refsum2cnlem1 45144 climxlim2lem 45953 ibliooicc 46079 fourierdlem50 46264 fourierdlem51 46265 fourierdlem54 46268 fourierdlem70 46284 fourierdlem71 46285 fourierdlem76 46290 fourierdlem102 46316 fourierdlem103 46317 fourierdlem104 46318 fourierdlem114 46328 saluncl 46425 sge0pr 46502 meadjun 46570 omeunle 46624 perfectALTVlem2 47832 gpgorder 48169 zlmodzxzel 48465 ldepspr 48584 zlmodzxzldeplem2 48612 rrx2line 48851 2sphere 48860 |
| Copyright terms: Public domain | W3C validator |