Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version |
Description: An unordered pair is finite. (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4569 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snfi 8804 | . . 3 ⊢ {𝐴} ∈ Fin | |
3 | snfi 8804 | . . 3 ⊢ {𝐵} ∈ Fin | |
4 | unfi 8920 | . . 3 ⊢ (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin) → ({𝐴} ∪ {𝐵}) ∈ Fin) | |
5 | 2, 3, 4 | mp2an 688 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ∈ Fin |
6 | 1, 5 | eqeltri 2836 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ∪ cun 3889 {csn 4566 {cpr 4568 Fincfn 8707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-om 7701 df-1o 8281 df-en 8708 df-fin 8711 |
This theorem is referenced by: tpfi 9051 fiint 9052 inelfi 9138 tskpr 10510 hashpw 14132 hashfun 14133 pr2pwpr 14174 hashtpg 14180 sumpr 15441 lcmfpr 16313 prmreclem2 16599 acsfn2 17353 isdrs2 18005 efmnd2hash 18514 symg2hash 18980 psgnprfval 19110 gsumpr 19537 znidomb 20750 m2detleib 21761 ovolioo 24713 i1f1 24835 itgioo 24961 limcun 25040 aannenlem2 25470 wilthlem2 26199 perfectlem2 26359 upgrex 27443 ex-hash 28796 prodpr 31119 linds2eq 31554 inelpisys 32101 coinfliplem 32424 coinflippv 32429 subfacp1lem1 33120 poimirlem9 35765 kelac2lem 40869 sumpair 42531 refsum2cnlem1 42533 climxlim2lem 43340 ibliooicc 43466 fourierdlem50 43651 fourierdlem51 43652 fourierdlem54 43655 fourierdlem70 43671 fourierdlem71 43672 fourierdlem76 43677 fourierdlem102 43703 fourierdlem103 43704 fourierdlem104 43705 fourierdlem114 43715 saluncl 43812 sge0pr 43886 meadjun 43954 omeunle 44008 perfectALTVlem2 45126 zlmodzxzel 45643 ldepspr 45766 zlmodzxzldeplem2 45794 rrx2line 46038 2sphere 46047 |
Copyright terms: Public domain | W3C validator |