| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version | ||
| Description: An unordered pair is finite. For a shorter proof using ax-un 7691, see prfiALT 9251. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2158, ax-un 7691. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 4725 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
| 2 | snfi 8991 | . . 3 ⊢ {𝐵} ∈ Fin | |
| 3 | 1, 2 | eqeltrdi 2836 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 4 | prprc2 4726 | . . 3 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) | |
| 5 | snfi 8991 | . . 3 ⊢ {𝐴} ∈ Fin | |
| 6 | 4, 5 | eqeltrdi 2836 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 7 | 2onn 8583 | . . . . . 6 ⊢ 2o ∈ ω | |
| 8 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
| 9 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ V) | |
| 10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 11 | 8, 9, 10 | enpr2d 8997 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | breq2 5106 | . . . . . . 7 ⊢ (𝑥 = 2o → ({𝐴, 𝐵} ≈ 𝑥 ↔ {𝐴, 𝐵} ≈ 2o)) | |
| 13 | 12 | rspcev 3585 | . . . . . 6 ⊢ ((2o ∈ ω ∧ {𝐴, 𝐵} ≈ 2o) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 14 | 7, 11, 13 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 15 | isfi 8924 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) | |
| 16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 17 | 16 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin)) |
| 18 | dfsn2 4598 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 19 | preq2 4694 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 20 | 18, 19 | eqtr2id 2777 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 21 | 20, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin) |
| 22 | 17, 21 | pm2.61d2 181 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ Fin) |
| 23 | 3, 6, 22 | ecase 1033 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 {csn 4585 {cpr 4587 class class class wbr 5102 ωcom 7822 2oc2o 8405 ≈ cen 8892 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-om 7823 df-1o 8411 df-2o 8412 df-en 8896 df-fin 8899 |
| This theorem is referenced by: tpfi 9252 fiint 9253 fiintOLD 9254 inelfi 9345 tskpr 10699 hashpw 14377 hashfun 14378 pr2pwpr 14420 hashtpg 14426 hash3tpexb 14435 sumpr 15690 lcmfpr 16573 prmreclem2 16864 acsfn2 17600 isdrs2 18243 efmnd2hash 18797 symg2hash 19298 psgnprfval 19427 gsumpr 19861 znidomb 21447 m2detleib 22494 ovolioo 25445 i1f1 25567 itgioo 25693 limcun 25772 aannenlem2 26213 wilthlem2 26955 perfectlem2 27117 upgrex 28995 ex-hash 30355 prodpr 32724 linds2eq 33325 elrspunsn 33373 constrfin 33709 constrllcllem 33715 constrlccllem 33716 inelpisys 34117 coinfliplem 34443 coinflippv 34448 subfacp1lem1 35139 poimirlem9 37596 kelac2lem 43026 sumpair 45002 refsum2cnlem1 45004 climxlim2lem 45816 ibliooicc 45942 fourierdlem50 46127 fourierdlem51 46128 fourierdlem54 46131 fourierdlem70 46147 fourierdlem71 46148 fourierdlem76 46153 fourierdlem102 46179 fourierdlem103 46180 fourierdlem104 46181 fourierdlem114 46191 saluncl 46288 sge0pr 46365 meadjun 46433 omeunle 46487 perfectALTVlem2 47696 gpgorder 48023 zlmodzxzel 48316 ldepspr 48435 zlmodzxzldeplem2 48463 rrx2line 48702 2sphere 48711 |
| Copyright terms: Public domain | W3C validator |