| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version | ||
| Description: An unordered pair is finite. For a shorter proof using ax-un 7691, see prfiALT 9251. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2158, ax-un 7691. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 4725 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
| 2 | snfi 8991 | . . 3 ⊢ {𝐵} ∈ Fin | |
| 3 | 1, 2 | eqeltrdi 2836 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 4 | prprc2 4726 | . . 3 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) | |
| 5 | snfi 8991 | . . 3 ⊢ {𝐴} ∈ Fin | |
| 6 | 4, 5 | eqeltrdi 2836 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} ∈ Fin) |
| 7 | 2onn 8583 | . . . . . 6 ⊢ 2o ∈ ω | |
| 8 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
| 9 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ V) | |
| 10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 11 | 8, 9, 10 | enpr2d 8997 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | breq2 5106 | . . . . . . 7 ⊢ (𝑥 = 2o → ({𝐴, 𝐵} ≈ 𝑥 ↔ {𝐴, 𝐵} ≈ 2o)) | |
| 13 | 12 | rspcev 3585 | . . . . . 6 ⊢ ((2o ∈ ω ∧ {𝐴, 𝐵} ≈ 2o) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 14 | 7, 11, 13 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
| 15 | isfi 8924 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) | |
| 16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 17 | 16 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin)) |
| 18 | dfsn2 4598 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 19 | preq2 4694 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 20 | 18, 19 | eqtr2id 2777 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 21 | 20, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin) |
| 22 | 17, 21 | pm2.61d2 181 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ Fin) |
| 23 | 3, 6, 22 | ecase 1033 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 {csn 4585 {cpr 4587 class class class wbr 5102 ωcom 7822 2oc2o 8405 ≈ cen 8892 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-om 7823 df-1o 8411 df-2o 8412 df-en 8896 df-fin 8899 |
| This theorem is referenced by: tpfi 9252 fiint 9253 fiintOLD 9254 inelfi 9345 tskpr 10699 hashpw 14377 hashfun 14378 pr2pwpr 14420 hashtpg 14426 hash3tpexb 14435 sumpr 15690 lcmfpr 16573 prmreclem2 16864 acsfn2 17604 isdrs2 18247 efmnd2hash 18803 symg2hash 19306 psgnprfval 19435 gsumpr 19869 znidomb 21503 m2detleib 22551 ovolioo 25502 i1f1 25624 itgioo 25750 limcun 25829 aannenlem2 26270 wilthlem2 27012 perfectlem2 27174 upgrex 29072 ex-hash 30432 prodpr 32801 linds2eq 33345 elrspunsn 33393 constrfin 33729 constrllcllem 33735 constrlccllem 33736 inelpisys 34137 coinfliplem 34463 coinflippv 34468 subfacp1lem1 35159 poimirlem9 37616 kelac2lem 43046 sumpair 45022 refsum2cnlem1 45024 climxlim2lem 45836 ibliooicc 45962 fourierdlem50 46147 fourierdlem51 46148 fourierdlem54 46151 fourierdlem70 46167 fourierdlem71 46168 fourierdlem76 46173 fourierdlem102 46199 fourierdlem103 46200 fourierdlem104 46201 fourierdlem114 46211 saluncl 46308 sge0pr 46385 meadjun 46453 omeunle 46507 perfectALTVlem2 47716 gpgorder 48043 zlmodzxzel 48336 ldepspr 48455 zlmodzxzldeplem2 48483 rrx2line 48722 2sphere 48731 |
| Copyright terms: Public domain | W3C validator |