Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version |
Description: An unordered pair is finite. (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4544 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snfi 8721 | . . 3 ⊢ {𝐴} ∈ Fin | |
3 | snfi 8721 | . . 3 ⊢ {𝐵} ∈ Fin | |
4 | unfi 8850 | . . 3 ⊢ (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin) → ({𝐴} ∪ {𝐵}) ∈ Fin) | |
5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ∈ Fin |
6 | 1, 5 | eqeltri 2834 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ∪ cun 3864 {csn 4541 {cpr 4543 Fincfn 8626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-1o 8202 df-en 8627 df-fin 8630 |
This theorem is referenced by: tpfi 8947 fiint 8948 inelfi 9034 tskpr 10384 hashpw 14003 hashfun 14004 pr2pwpr 14045 hashtpg 14051 sumpr 15312 lcmfpr 16184 prmreclem2 16470 acsfn2 17166 isdrs2 17813 efmnd2hash 18321 symg2hash 18784 psgnprfval 18913 gsumpr 19340 znidomb 20526 m2detleib 21528 ovolioo 24465 i1f1 24587 itgioo 24713 limcun 24792 aannenlem2 25222 wilthlem2 25951 perfectlem2 26111 upgrex 27183 ex-hash 28536 prodpr 30860 linds2eq 31289 inelpisys 31834 coinfliplem 32157 coinflippv 32162 subfacp1lem1 32854 poimirlem9 35523 kelac2lem 40592 sumpair 42251 refsum2cnlem1 42253 climxlim2lem 43061 ibliooicc 43187 fourierdlem50 43372 fourierdlem51 43373 fourierdlem54 43376 fourierdlem70 43392 fourierdlem71 43393 fourierdlem76 43398 fourierdlem102 43424 fourierdlem103 43425 fourierdlem104 43426 fourierdlem114 43436 saluncl 43533 sge0pr 43607 meadjun 43675 omeunle 43729 perfectALTVlem2 44847 zlmodzxzel 45364 ldepspr 45487 zlmodzxzldeplem2 45515 rrx2line 45759 2sphere 45768 |
Copyright terms: Public domain | W3C validator |