![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version |
Description: An unordered pair is finite. For a shorter proof using ax-un 7770, see prfiALT 9392. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2158, ax-un 7770. (Revised by BTernaryTau, 13-Jan-2025.) |
Ref | Expression |
---|---|
prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 4790 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
2 | snfi 9109 | . . 3 ⊢ {𝐵} ∈ Fin | |
3 | 1, 2 | eqeltrdi 2852 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} ∈ Fin) |
4 | prprc2 4791 | . . 3 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) | |
5 | snfi 9109 | . . 3 ⊢ {𝐴} ∈ Fin | |
6 | 4, 5 | eqeltrdi 2852 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} ∈ Fin) |
7 | 2onn 8698 | . . . . . 6 ⊢ 2o ∈ ω | |
8 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
9 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ V) | |
10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
11 | 8, 9, 10 | enpr2d 9115 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
12 | breq2 5170 | . . . . . . 7 ⊢ (𝑥 = 2o → ({𝐴, 𝐵} ≈ 𝑥 ↔ {𝐴, 𝐵} ≈ 2o)) | |
13 | 12 | rspcev 3635 | . . . . . 6 ⊢ ((2o ∈ ω ∧ {𝐴, 𝐵} ≈ 2o) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
14 | 7, 11, 13 | sylancr 586 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) |
15 | isfi 9036 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴, 𝐵} ≈ 𝑥) | |
16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
17 | 16 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (¬ 𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin)) |
18 | dfsn2 4661 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
19 | preq2 4759 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
20 | 18, 19 | eqtr2id 2793 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
21 | 20, 5 | eqeltrdi 2852 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} ∈ Fin) |
22 | 17, 21 | pm2.61d2 181 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ Fin) |
23 | 3, 6, 22 | ecase 1033 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 {csn 4648 {cpr 4650 class class class wbr 5166 ωcom 7903 2oc2o 8516 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-om 7904 df-1o 8522 df-2o 8523 df-en 9004 df-fin 9007 |
This theorem is referenced by: tpfi 9393 fiint 9394 fiintOLD 9395 inelfi 9487 tskpr 10839 hashpw 14485 hashfun 14486 pr2pwpr 14528 hashtpg 14534 hash3tpexb 14543 sumpr 15796 lcmfpr 16674 prmreclem2 16964 acsfn2 17721 isdrs2 18376 efmnd2hash 18929 symg2hash 19433 psgnprfval 19563 gsumpr 19997 znidomb 21603 m2detleib 22658 ovolioo 25622 i1f1 25744 itgioo 25871 limcun 25950 aannenlem2 26389 wilthlem2 27130 perfectlem2 27292 upgrex 29127 ex-hash 30485 prodpr 32830 linds2eq 33374 elrspunsn 33422 constrfin 33736 inelpisys 34118 coinfliplem 34443 coinflippv 34448 subfacp1lem1 35147 poimirlem9 37589 kelac2lem 43021 sumpair 44935 refsum2cnlem1 44937 climxlim2lem 45766 ibliooicc 45892 fourierdlem50 46077 fourierdlem51 46078 fourierdlem54 46081 fourierdlem70 46097 fourierdlem71 46098 fourierdlem76 46103 fourierdlem102 46129 fourierdlem103 46130 fourierdlem104 46131 fourierdlem114 46141 saluncl 46238 sge0pr 46315 meadjun 46383 omeunle 46437 perfectALTVlem2 47596 zlmodzxzel 48080 ldepspr 48202 zlmodzxzldeplem2 48230 rrx2line 48474 2sphere 48483 |
Copyright terms: Public domain | W3C validator |