| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8924 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5091 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 |
| This theorem is referenced by: ensymi 8926 ensymd 8927 sbthb 9011 domnsym 9016 sdomdomtr 9023 domsdomtr 9025 enen1 9030 enen2 9031 domen1 9032 domen2 9033 sdomen1 9034 sdomen2 9035 domtriord 9036 xpen 9053 pwen 9063 fineqvlem 9150 dif1ennnALT 9161 isfinite2 9182 domunfican 9206 infcntss 9207 wdomen1 9462 wdomen2 9463 unxpwdom2 9474 karden 9785 finnum 9838 carden2b 9857 fidomtri2 9884 cardmin2 9889 en2eleq 9896 infxpenlem 9901 acnen 9941 acnen2 9943 infpwfien 9950 alephordi 9962 alephinit 9983 dfac12lem2 10033 dfac12r 10035 undjudom 10056 djucomen 10066 djuinf 10077 pwsdompw 10091 infmap2 10105 ackbij1b 10126 cflim2 10151 fin4en1 10197 domfin4 10199 fin23lem25 10212 fin23lem23 10214 enfin1ai 10272 fin67 10283 isfin7-2 10284 fin1a2lem11 10298 axcc2lem 10324 axcclem 10345 numthcor 10382 carden 10439 sdomsdomcard 10448 canthnum 10537 canthwe 10539 canthp1lem2 10541 canthp1 10542 pwxpndom2 10553 gchdjuidm 10556 gchxpidm 10557 gchpwdom 10558 inawinalem 10577 grudomon 10705 isfinite4 14266 hashfn 14279 ramub2 16923 dfod2 19474 sylow2blem1 19530 znhash 21493 hauspwdom 23414 rectbntr0 24746 ovolctb 25416 dyadmbl 25526 eupthfi 30180 derangen 35204 finminlem 36351 domalom 37437 phpreu 37643 pellexlem4 42864 pellexlem5 42865 pellex 42867 |
| Copyright terms: Public domain | W3C validator |