Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8863 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5092 ≈ cen 8801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-er 8569 df-en 8805 |
This theorem is referenced by: ensymi 8865 ensymd 8866 sbthb 8959 domnsym 8964 sdomdomtr 8975 domsdomtr 8977 enen1 8982 enen2 8983 domen1 8984 domen2 8985 sdomen1 8986 sdomen2 8987 domtriord 8988 xpen 9005 pwen 9015 nneneqOLD 9086 php2OLD 9088 php3OLD 9089 phpeqdOLD 9090 ominfOLD 9124 fineqvlem 9127 en1eqsnOLD 9140 dif1ennnALT 9142 enp1iOLD 9145 findcard3OLD 9151 isfinite2 9166 nnsdomgOLD 9168 domunfican 9185 infcntss 9186 fiint 9189 wdomen1 9433 wdomen2 9434 unxpwdom2 9445 karden 9752 finnum 9805 carden2b 9824 fidomtri2 9851 cardmin2 9856 pr2neOLD 9862 en2eleq 9865 infxpenlem 9870 acnen 9910 acnen2 9912 infpwfien 9919 alephordi 9931 alephinit 9952 dfac12lem2 10001 dfac12r 10003 undjudom 10024 djucomen 10034 djuinf 10045 pwsdompw 10061 infmap2 10075 ackbij1b 10096 cflim2 10120 fin4en1 10166 domfin4 10168 fin23lem25 10181 fin23lem23 10183 enfin1ai 10241 fin67 10252 isfin7-2 10253 fin1a2lem11 10267 axcc2lem 10293 axcclem 10314 numthcor 10351 carden 10408 sdomsdomcard 10417 canthnum 10506 canthwe 10508 canthp1lem2 10510 canthp1 10511 pwxpndom2 10522 gchdjuidm 10525 gchxpidm 10526 gchpwdom 10527 inawinalem 10546 grudomon 10674 isfinite4 14177 hashfn 14190 ramub2 16812 dfod2 19267 sylow2blem1 19321 znhash 20872 hauspwdom 22758 rectbntr0 24101 ovolctb 24760 dyadmbl 24870 eupthfi 28857 derangen 33433 finminlem 34603 domalom 35680 phpreu 35866 pellexlem4 40916 pellexlem5 40917 pellex 40919 |
Copyright terms: Public domain | W3C validator |