Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8676 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 219 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5053 ≈ cen 8623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-er 8391 df-en 8627 |
This theorem is referenced by: ensymi 8678 ensymd 8679 sbthb 8767 domnsym 8772 sdomdomtr 8779 domsdomtr 8781 enen1 8786 enen2 8787 domen1 8788 domen2 8789 sdomen1 8790 sdomen2 8791 domtriord 8792 xpen 8809 pwen 8819 nneneq 8829 php2 8831 php3 8832 phpeqd 8835 ominf 8890 fineqvlem 8892 en1eqsn 8904 dif1enALT 8907 enp1i 8909 findcard3 8914 isfinite2 8929 nnsdomg 8930 domunfican 8944 infcntss 8945 fiint 8948 wdomen1 9192 wdomen2 9193 unxpwdom2 9204 karden 9511 finnum 9564 carden2b 9583 fidomtri2 9610 cardmin2 9615 pr2ne 9619 en2eleq 9622 infxpenlem 9627 acnen 9667 acnen2 9669 infpwfien 9676 alephordi 9688 alephinit 9709 dfac12lem2 9758 dfac12r 9760 undjudom 9781 djucomen 9791 djuinf 9802 pwsdompw 9818 infmap2 9832 ackbij1b 9853 cflim2 9877 fin4en1 9923 domfin4 9925 fin23lem25 9938 fin23lem23 9940 enfin1ai 9998 fin67 10009 isfin7-2 10010 fin1a2lem11 10024 axcc2lem 10050 axcclem 10071 numthcor 10108 carden 10165 sdomsdomcard 10174 canthnum 10263 canthwe 10265 canthp1lem2 10267 canthp1 10268 pwxpndom2 10279 gchdjuidm 10282 gchxpidm 10283 gchpwdom 10284 inawinalem 10303 grudomon 10431 isfinite4 13929 hashfn 13942 ramub2 16567 dfod2 18955 sylow2blem1 19009 znhash 20523 hauspwdom 22398 rectbntr0 23729 ovolctb 24387 dyadmbl 24497 eupthfi 28288 derangen 32847 finminlem 34244 domalom 35312 phpreu 35498 pellexlem4 40357 pellexlem5 40358 pellex 40360 |
Copyright terms: Public domain | W3C validator |