Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8788 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5074 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 |
This theorem is referenced by: ensymi 8790 ensymd 8791 sbthb 8881 domnsym 8886 sdomdomtr 8897 domsdomtr 8899 enen1 8904 enen2 8905 domen1 8906 domen2 8907 sdomen1 8908 sdomen2 8909 domtriord 8910 xpen 8927 pwen 8937 nneneqOLD 9004 php2OLD 9006 php3OLD 9007 phpeqdOLD 9008 ominf 9035 fineqvlem 9037 en1eqsn 9048 dif1enALT 9050 enp1i 9052 findcard3 9057 isfinite2 9072 nnsdomg 9073 domunfican 9087 infcntss 9088 fiint 9091 wdomen1 9335 wdomen2 9336 unxpwdom2 9347 karden 9653 finnum 9706 carden2b 9725 fidomtri2 9752 cardmin2 9757 pr2ne 9761 en2eleq 9764 infxpenlem 9769 acnen 9809 acnen2 9811 infpwfien 9818 alephordi 9830 alephinit 9851 dfac12lem2 9900 dfac12r 9902 undjudom 9923 djucomen 9933 djuinf 9944 pwsdompw 9960 infmap2 9974 ackbij1b 9995 cflim2 10019 fin4en1 10065 domfin4 10067 fin23lem25 10080 fin23lem23 10082 enfin1ai 10140 fin67 10151 isfin7-2 10152 fin1a2lem11 10166 axcc2lem 10192 axcclem 10213 numthcor 10250 carden 10307 sdomsdomcard 10316 canthnum 10405 canthwe 10407 canthp1lem2 10409 canthp1 10410 pwxpndom2 10421 gchdjuidm 10424 gchxpidm 10425 gchpwdom 10426 inawinalem 10445 grudomon 10573 isfinite4 14077 hashfn 14090 ramub2 16715 dfod2 19171 sylow2blem1 19225 znhash 20766 hauspwdom 22652 rectbntr0 23995 ovolctb 24654 dyadmbl 24764 eupthfi 28569 derangen 33134 finminlem 34507 domalom 35575 phpreu 35761 pellexlem4 40654 pellexlem5 40655 pellex 40657 |
Copyright terms: Public domain | W3C validator |