![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8998 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5149 ≈ cen 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-er 8703 df-en 8940 |
This theorem is referenced by: ensymi 9000 ensymd 9001 sbthb 9094 domnsym 9099 sdomdomtr 9110 domsdomtr 9112 enen1 9117 enen2 9118 domen1 9119 domen2 9120 sdomen1 9121 sdomen2 9122 domtriord 9123 xpen 9140 pwen 9150 nneneqOLD 9221 php2OLD 9223 php3OLD 9224 phpeqdOLD 9225 ominfOLD 9259 fineqvlem 9262 en1eqsnOLD 9275 dif1ennnALT 9277 enp1iOLD 9280 findcard3OLD 9286 isfinite2 9301 nnsdomgOLD 9303 domunfican 9320 infcntss 9321 fiint 9324 wdomen1 9571 wdomen2 9572 unxpwdom2 9583 karden 9890 finnum 9943 carden2b 9962 fidomtri2 9989 cardmin2 9994 pr2neOLD 10000 en2eleq 10003 infxpenlem 10008 acnen 10048 acnen2 10050 infpwfien 10057 alephordi 10069 alephinit 10090 dfac12lem2 10139 dfac12r 10141 undjudom 10162 djucomen 10172 djuinf 10183 pwsdompw 10199 infmap2 10213 ackbij1b 10234 cflim2 10258 fin4en1 10304 domfin4 10306 fin23lem25 10319 fin23lem23 10321 enfin1ai 10379 fin67 10390 isfin7-2 10391 fin1a2lem11 10405 axcc2lem 10431 axcclem 10452 numthcor 10489 carden 10546 sdomsdomcard 10555 canthnum 10644 canthwe 10646 canthp1lem2 10648 canthp1 10649 pwxpndom2 10660 gchdjuidm 10663 gchxpidm 10664 gchpwdom 10665 inawinalem 10684 grudomon 10812 isfinite4 14322 hashfn 14335 ramub2 16947 dfod2 19432 sylow2blem1 19488 znhash 21114 hauspwdom 23005 rectbntr0 24348 ovolctb 25007 dyadmbl 25117 eupthfi 29458 derangen 34163 finminlem 35203 domalom 36285 phpreu 36472 pellexlem4 41570 pellexlem5 41571 pellex 41573 |
Copyright terms: Public domain | W3C validator |