| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8934 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5095 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8632 df-en 8880 |
| This theorem is referenced by: ensymi 8936 ensymd 8937 sbthb 9022 domnsym 9027 sdomdomtr 9034 domsdomtr 9036 enen1 9041 enen2 9042 domen1 9043 domen2 9044 sdomen1 9045 sdomen2 9046 domtriord 9047 xpen 9064 pwen 9074 ominfOLD 9164 fineqvlem 9167 en1eqsnOLD 9178 dif1ennnALT 9180 enp1iOLD 9183 findcard3OLD 9188 isfinite2 9203 nnsdomgOLD 9205 domunfican 9230 infcntss 9231 fiintOLD 9236 wdomen1 9487 wdomen2 9488 unxpwdom2 9499 karden 9810 finnum 9863 carden2b 9882 fidomtri2 9909 cardmin2 9914 en2eleq 9921 infxpenlem 9926 acnen 9966 acnen2 9968 infpwfien 9975 alephordi 9987 alephinit 10008 dfac12lem2 10058 dfac12r 10060 undjudom 10081 djucomen 10091 djuinf 10102 pwsdompw 10116 infmap2 10130 ackbij1b 10151 cflim2 10176 fin4en1 10222 domfin4 10224 fin23lem25 10237 fin23lem23 10239 enfin1ai 10297 fin67 10308 isfin7-2 10309 fin1a2lem11 10323 axcc2lem 10349 axcclem 10370 numthcor 10407 carden 10464 sdomsdomcard 10473 canthnum 10562 canthwe 10564 canthp1lem2 10566 canthp1 10567 pwxpndom2 10578 gchdjuidm 10581 gchxpidm 10582 gchpwdom 10583 inawinalem 10602 grudomon 10730 isfinite4 14287 hashfn 14300 ramub2 16944 dfod2 19461 sylow2blem1 19517 znhash 21483 hauspwdom 23404 rectbntr0 24737 ovolctb 25407 dyadmbl 25517 eupthfi 30167 derangen 35144 finminlem 36291 domalom 37377 phpreu 37583 pellexlem4 42805 pellexlem5 42806 pellex 42808 |
| Copyright terms: Public domain | W3C validator |