![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 9062 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5166 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-er 8763 df-en 9004 |
This theorem is referenced by: ensymi 9064 ensymd 9065 sbthb 9160 domnsym 9165 sdomdomtr 9176 domsdomtr 9178 enen1 9183 enen2 9184 domen1 9185 domen2 9186 sdomen1 9187 sdomen2 9188 domtriord 9189 xpen 9206 pwen 9216 nneneqOLD 9284 php2OLD 9286 php3OLD 9287 phpeqdOLD 9288 ominfOLD 9322 fineqvlem 9325 en1eqsnOLD 9337 dif1ennnALT 9339 enp1iOLD 9342 findcard3OLD 9347 isfinite2 9362 nnsdomgOLD 9364 domunfican 9389 infcntss 9390 fiintOLD 9395 wdomen1 9645 wdomen2 9646 unxpwdom2 9657 karden 9964 finnum 10017 carden2b 10036 fidomtri2 10063 cardmin2 10068 pr2neOLD 10074 en2eleq 10077 infxpenlem 10082 acnen 10122 acnen2 10124 infpwfien 10131 alephordi 10143 alephinit 10164 dfac12lem2 10214 dfac12r 10216 undjudom 10237 djucomen 10247 djuinf 10258 pwsdompw 10272 infmap2 10286 ackbij1b 10307 cflim2 10332 fin4en1 10378 domfin4 10380 fin23lem25 10393 fin23lem23 10395 enfin1ai 10453 fin67 10464 isfin7-2 10465 fin1a2lem11 10479 axcc2lem 10505 axcclem 10526 numthcor 10563 carden 10620 sdomsdomcard 10629 canthnum 10718 canthwe 10720 canthp1lem2 10722 canthp1 10723 pwxpndom2 10734 gchdjuidm 10737 gchxpidm 10738 gchpwdom 10739 inawinalem 10758 grudomon 10886 isfinite4 14411 hashfn 14424 ramub2 17061 dfod2 19606 sylow2blem1 19662 znhash 21600 hauspwdom 23530 rectbntr0 24873 ovolctb 25544 dyadmbl 25654 eupthfi 30237 derangen 35140 finminlem 36284 domalom 37370 phpreu 37564 pellexlem4 42788 pellexlem5 42789 pellex 42791 |
Copyright terms: Public domain | W3C validator |