Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8743 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5070 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 |
This theorem is referenced by: ensymi 8745 ensymd 8746 sbthb 8834 domnsym 8839 sdomdomtr 8846 domsdomtr 8848 enen1 8853 enen2 8854 domen1 8855 domen2 8856 sdomen1 8857 sdomen2 8858 domtriord 8859 xpen 8876 pwen 8886 nneneq 8896 php2 8898 php3 8899 phpeqd 8902 ominf 8964 fineqvlem 8966 en1eqsn 8977 dif1enALT 8980 enp1i 8982 findcard3 8987 isfinite2 9002 nnsdomg 9003 domunfican 9017 infcntss 9018 fiint 9021 wdomen1 9265 wdomen2 9266 unxpwdom2 9277 karden 9584 finnum 9637 carden2b 9656 fidomtri2 9683 cardmin2 9688 pr2ne 9692 en2eleq 9695 infxpenlem 9700 acnen 9740 acnen2 9742 infpwfien 9749 alephordi 9761 alephinit 9782 dfac12lem2 9831 dfac12r 9833 undjudom 9854 djucomen 9864 djuinf 9875 pwsdompw 9891 infmap2 9905 ackbij1b 9926 cflim2 9950 fin4en1 9996 domfin4 9998 fin23lem25 10011 fin23lem23 10013 enfin1ai 10071 fin67 10082 isfin7-2 10083 fin1a2lem11 10097 axcc2lem 10123 axcclem 10144 numthcor 10181 carden 10238 sdomsdomcard 10247 canthnum 10336 canthwe 10338 canthp1lem2 10340 canthp1 10341 pwxpndom2 10352 gchdjuidm 10355 gchxpidm 10356 gchpwdom 10357 inawinalem 10376 grudomon 10504 isfinite4 14005 hashfn 14018 ramub2 16643 dfod2 19086 sylow2blem1 19140 znhash 20678 hauspwdom 22560 rectbntr0 23901 ovolctb 24559 dyadmbl 24669 eupthfi 28470 derangen 33034 finminlem 34434 domalom 35502 phpreu 35688 pellexlem4 40570 pellexlem5 40571 pellex 40573 |
Copyright terms: Public domain | W3C validator |