| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8976 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5110 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 |
| This theorem is referenced by: ensymi 8978 ensymd 8979 sbthb 9068 domnsym 9073 sdomdomtr 9080 domsdomtr 9082 enen1 9087 enen2 9088 domen1 9089 domen2 9090 sdomen1 9091 sdomen2 9092 domtriord 9093 xpen 9110 pwen 9120 ominfOLD 9213 fineqvlem 9216 en1eqsnOLD 9227 dif1ennnALT 9229 enp1iOLD 9232 findcard3OLD 9237 isfinite2 9252 nnsdomgOLD 9254 domunfican 9279 infcntss 9280 fiintOLD 9285 wdomen1 9536 wdomen2 9537 unxpwdom2 9548 karden 9855 finnum 9908 carden2b 9927 fidomtri2 9954 cardmin2 9959 pr2neOLD 9965 en2eleq 9968 infxpenlem 9973 acnen 10013 acnen2 10015 infpwfien 10022 alephordi 10034 alephinit 10055 dfac12lem2 10105 dfac12r 10107 undjudom 10128 djucomen 10138 djuinf 10149 pwsdompw 10163 infmap2 10177 ackbij1b 10198 cflim2 10223 fin4en1 10269 domfin4 10271 fin23lem25 10284 fin23lem23 10286 enfin1ai 10344 fin67 10355 isfin7-2 10356 fin1a2lem11 10370 axcc2lem 10396 axcclem 10417 numthcor 10454 carden 10511 sdomsdomcard 10520 canthnum 10609 canthwe 10611 canthp1lem2 10613 canthp1 10614 pwxpndom2 10625 gchdjuidm 10628 gchxpidm 10629 gchpwdom 10630 inawinalem 10649 grudomon 10777 isfinite4 14334 hashfn 14347 ramub2 16992 dfod2 19501 sylow2blem1 19557 znhash 21475 hauspwdom 23395 rectbntr0 24728 ovolctb 25398 dyadmbl 25508 eupthfi 30141 derangen 35166 finminlem 36313 domalom 37399 phpreu 37605 pellexlem4 42827 pellexlem5 42828 pellex 42830 |
| Copyright terms: Public domain | W3C validator |