![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8408 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 217 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 4964 ≈ cen 8357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-br 4965 df-opab 5027 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-er 8142 df-en 8361 |
This theorem is referenced by: ensymi 8410 ensymd 8411 sbthb 8488 domnsym 8493 sdomdomtr 8500 domsdomtr 8502 enen1 8507 enen2 8508 domen1 8509 domen2 8510 sdomen1 8511 sdomen2 8512 domtriord 8513 xpen 8530 pwen 8540 nneneq 8550 php2 8552 php3 8553 ominf 8579 fineqvlem 8581 en1eqsn 8597 dif1en 8600 enp1i 8602 findcard3 8610 isfinite2 8625 nnsdomg 8626 domunfican 8640 infcntss 8641 fiint 8644 wdomen1 8889 wdomen2 8890 unxpwdom2 8901 karden 9173 finnum 9226 carden2b 9245 fidomtri2 9272 cardmin2 9276 pr2ne 9280 en2eleq 9283 infxpenlem 9288 acnen 9328 acnen2 9330 infpwfien 9337 alephordi 9349 alephinit 9370 dfac12lem2 9419 dfac12r 9421 undjudom 9442 djucomen 9452 djuinf 9463 pwsdompw 9475 infmap2 9489 ackbij1b 9510 cflim2 9534 fin4en1 9580 domfin4 9582 fin23lem25 9595 fin23lem23 9597 enfin1ai 9655 fin67 9666 isfin7-2 9667 fin1a2lem11 9681 axcc2lem 9707 axcclem 9728 numthcor 9765 carden 9822 sdomsdomcard 9831 canthnum 9920 canthwe 9922 canthp1lem2 9924 canthp1 9925 pwxpndom2 9936 gchdjuidm 9939 gchxpidm 9940 gchpwdom 9941 inawinalem 9960 grudomon 10088 isfinite4 13573 hashfn 13584 ramub2 16179 dfod2 18421 sylow2blem1 18475 znhash 20387 hauspwdom 21793 rectbntr0 23123 ovolctb 23774 dyadmbl 23884 eupthfi 27666 derangen 32021 finminlem 33269 domalom 34229 phpreu 34420 pellexlem4 38927 pellexlem5 38928 pellex 38930 rr-php2d 40066 |
Copyright terms: Public domain | W3C validator |