| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8931 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5093 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8628 df-en 8876 |
| This theorem is referenced by: ensymi 8933 ensymd 8934 sbthb 9018 domnsym 9023 sdomdomtr 9030 domsdomtr 9032 enen1 9037 enen2 9038 domen1 9039 domen2 9040 sdomen1 9041 sdomen2 9042 domtriord 9043 xpen 9060 pwen 9070 fineqvlem 9157 dif1ennnALT 9168 isfinite2 9189 domunfican 9213 infcntss 9214 wdomen1 9469 wdomen2 9470 unxpwdom2 9481 karden 9795 finnum 9848 carden2b 9867 fidomtri2 9894 cardmin2 9899 en2eleq 9906 infxpenlem 9911 acnen 9951 acnen2 9953 infpwfien 9960 alephordi 9972 alephinit 9993 dfac12lem2 10043 dfac12r 10045 undjudom 10066 djucomen 10076 djuinf 10087 pwsdompw 10101 infmap2 10115 ackbij1b 10136 cflim2 10161 fin4en1 10207 domfin4 10209 fin23lem25 10222 fin23lem23 10224 enfin1ai 10282 fin67 10293 isfin7-2 10294 fin1a2lem11 10308 axcc2lem 10334 axcclem 10355 numthcor 10392 carden 10449 sdomsdomcard 10458 canthnum 10547 canthwe 10549 canthp1lem2 10551 canthp1 10552 pwxpndom2 10563 gchdjuidm 10566 gchxpidm 10567 gchpwdom 10568 inawinalem 10587 grudomon 10715 isfinite4 14271 hashfn 14284 ramub2 16928 dfod2 19478 sylow2blem1 19534 znhash 21497 hauspwdom 23417 rectbntr0 24749 ovolctb 25419 dyadmbl 25529 eupthfi 30187 derangen 35237 finminlem 36383 domalom 37469 phpreu 37664 pellexlem4 42949 pellexlem5 42950 pellex 42952 |
| Copyright terms: Public domain | W3C validator |