| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 9016 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5119 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-er 8719 df-en 8960 |
| This theorem is referenced by: ensymi 9018 ensymd 9019 sbthb 9108 domnsym 9113 sdomdomtr 9124 domsdomtr 9126 enen1 9131 enen2 9132 domen1 9133 domen2 9134 sdomen1 9135 sdomen2 9136 domtriord 9137 xpen 9154 pwen 9164 php2OLD 9232 php3OLD 9233 phpeqdOLD 9234 ominfOLD 9267 fineqvlem 9270 en1eqsnOLD 9281 dif1ennnALT 9283 enp1iOLD 9286 findcard3OLD 9291 isfinite2 9306 nnsdomgOLD 9308 domunfican 9333 infcntss 9334 fiintOLD 9339 wdomen1 9590 wdomen2 9591 unxpwdom2 9602 karden 9909 finnum 9962 carden2b 9981 fidomtri2 10008 cardmin2 10013 pr2neOLD 10019 en2eleq 10022 infxpenlem 10027 acnen 10067 acnen2 10069 infpwfien 10076 alephordi 10088 alephinit 10109 dfac12lem2 10159 dfac12r 10161 undjudom 10182 djucomen 10192 djuinf 10203 pwsdompw 10217 infmap2 10231 ackbij1b 10252 cflim2 10277 fin4en1 10323 domfin4 10325 fin23lem25 10338 fin23lem23 10340 enfin1ai 10398 fin67 10409 isfin7-2 10410 fin1a2lem11 10424 axcc2lem 10450 axcclem 10471 numthcor 10508 carden 10565 sdomsdomcard 10574 canthnum 10663 canthwe 10665 canthp1lem2 10667 canthp1 10668 pwxpndom2 10679 gchdjuidm 10682 gchxpidm 10683 gchpwdom 10684 inawinalem 10703 grudomon 10831 isfinite4 14380 hashfn 14393 ramub2 17034 dfod2 19545 sylow2blem1 19601 znhash 21519 hauspwdom 23439 rectbntr0 24772 ovolctb 25443 dyadmbl 25553 eupthfi 30186 derangen 35194 finminlem 36336 domalom 37422 phpreu 37628 pellexlem4 42855 pellexlem5 42856 pellex 42858 |
| Copyright terms: Public domain | W3C validator |