| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 9042 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5143 ≈ cen 8982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-er 8745 df-en 8986 |
| This theorem is referenced by: ensymi 9044 ensymd 9045 sbthb 9134 domnsym 9139 sdomdomtr 9150 domsdomtr 9152 enen1 9157 enen2 9158 domen1 9159 domen2 9160 sdomen1 9161 sdomen2 9162 domtriord 9163 xpen 9180 pwen 9190 nneneqOLD 9258 php2OLD 9260 php3OLD 9261 phpeqdOLD 9262 ominfOLD 9295 fineqvlem 9298 en1eqsnOLD 9309 dif1ennnALT 9311 enp1iOLD 9314 findcard3OLD 9319 isfinite2 9334 nnsdomgOLD 9336 domunfican 9361 infcntss 9362 fiintOLD 9367 wdomen1 9616 wdomen2 9617 unxpwdom2 9628 karden 9935 finnum 9988 carden2b 10007 fidomtri2 10034 cardmin2 10039 pr2neOLD 10045 en2eleq 10048 infxpenlem 10053 acnen 10093 acnen2 10095 infpwfien 10102 alephordi 10114 alephinit 10135 dfac12lem2 10185 dfac12r 10187 undjudom 10208 djucomen 10218 djuinf 10229 pwsdompw 10243 infmap2 10257 ackbij1b 10278 cflim2 10303 fin4en1 10349 domfin4 10351 fin23lem25 10364 fin23lem23 10366 enfin1ai 10424 fin67 10435 isfin7-2 10436 fin1a2lem11 10450 axcc2lem 10476 axcclem 10497 numthcor 10534 carden 10591 sdomsdomcard 10600 canthnum 10689 canthwe 10691 canthp1lem2 10693 canthp1 10694 pwxpndom2 10705 gchdjuidm 10708 gchxpidm 10709 gchpwdom 10710 inawinalem 10729 grudomon 10857 isfinite4 14401 hashfn 14414 ramub2 17052 dfod2 19582 sylow2blem1 19638 znhash 21577 hauspwdom 23509 rectbntr0 24854 ovolctb 25525 dyadmbl 25635 eupthfi 30224 derangen 35177 finminlem 36319 domalom 37405 phpreu 37611 pellexlem4 42843 pellexlem5 42844 pellex 42846 |
| Copyright terms: Public domain | W3C validator |