| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8973 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5107 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-er 8671 df-en 8919 |
| This theorem is referenced by: ensymi 8975 ensymd 8976 sbthb 9062 domnsym 9067 sdomdomtr 9074 domsdomtr 9076 enen1 9081 enen2 9082 domen1 9083 domen2 9084 sdomen1 9085 sdomen2 9086 domtriord 9087 xpen 9104 pwen 9114 ominfOLD 9206 fineqvlem 9209 en1eqsnOLD 9220 dif1ennnALT 9222 enp1iOLD 9225 findcard3OLD 9230 isfinite2 9245 nnsdomgOLD 9247 domunfican 9272 infcntss 9273 fiintOLD 9278 wdomen1 9529 wdomen2 9530 unxpwdom2 9541 karden 9848 finnum 9901 carden2b 9920 fidomtri2 9947 cardmin2 9952 pr2neOLD 9958 en2eleq 9961 infxpenlem 9966 acnen 10006 acnen2 10008 infpwfien 10015 alephordi 10027 alephinit 10048 dfac12lem2 10098 dfac12r 10100 undjudom 10121 djucomen 10131 djuinf 10142 pwsdompw 10156 infmap2 10170 ackbij1b 10191 cflim2 10216 fin4en1 10262 domfin4 10264 fin23lem25 10277 fin23lem23 10279 enfin1ai 10337 fin67 10348 isfin7-2 10349 fin1a2lem11 10363 axcc2lem 10389 axcclem 10410 numthcor 10447 carden 10504 sdomsdomcard 10513 canthnum 10602 canthwe 10604 canthp1lem2 10606 canthp1 10607 pwxpndom2 10618 gchdjuidm 10621 gchxpidm 10622 gchpwdom 10623 inawinalem 10642 grudomon 10770 isfinite4 14327 hashfn 14340 ramub2 16985 dfod2 19494 sylow2blem1 19550 znhash 21468 hauspwdom 23388 rectbntr0 24721 ovolctb 25391 dyadmbl 25501 eupthfi 30134 derangen 35159 finminlem 36306 domalom 37392 phpreu 37598 pellexlem4 42820 pellexlem5 42821 pellex 42823 |
| Copyright terms: Public domain | W3C validator |