![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 9041 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5148 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-er 8744 df-en 8985 |
This theorem is referenced by: ensymi 9043 ensymd 9044 sbthb 9133 domnsym 9138 sdomdomtr 9149 domsdomtr 9151 enen1 9156 enen2 9157 domen1 9158 domen2 9159 sdomen1 9160 sdomen2 9161 domtriord 9162 xpen 9179 pwen 9189 nneneqOLD 9256 php2OLD 9258 php3OLD 9259 phpeqdOLD 9260 ominfOLD 9293 fineqvlem 9296 en1eqsnOLD 9307 dif1ennnALT 9309 enp1iOLD 9312 findcard3OLD 9317 isfinite2 9332 nnsdomgOLD 9334 domunfican 9359 infcntss 9360 fiintOLD 9365 wdomen1 9614 wdomen2 9615 unxpwdom2 9626 karden 9933 finnum 9986 carden2b 10005 fidomtri2 10032 cardmin2 10037 pr2neOLD 10043 en2eleq 10046 infxpenlem 10051 acnen 10091 acnen2 10093 infpwfien 10100 alephordi 10112 alephinit 10133 dfac12lem2 10183 dfac12r 10185 undjudom 10206 djucomen 10216 djuinf 10227 pwsdompw 10241 infmap2 10255 ackbij1b 10276 cflim2 10301 fin4en1 10347 domfin4 10349 fin23lem25 10362 fin23lem23 10364 enfin1ai 10422 fin67 10433 isfin7-2 10434 fin1a2lem11 10448 axcc2lem 10474 axcclem 10495 numthcor 10532 carden 10589 sdomsdomcard 10598 canthnum 10687 canthwe 10689 canthp1lem2 10691 canthp1 10692 pwxpndom2 10703 gchdjuidm 10706 gchxpidm 10707 gchpwdom 10708 inawinalem 10727 grudomon 10855 isfinite4 14398 hashfn 14411 ramub2 17048 dfod2 19597 sylow2blem1 19653 znhash 21595 hauspwdom 23525 rectbntr0 24868 ovolctb 25539 dyadmbl 25649 eupthfi 30234 derangen 35157 finminlem 36301 domalom 37387 phpreu 37591 pellexlem4 42820 pellexlem5 42821 pellex 42823 |
Copyright terms: Public domain | W3C validator |