MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzinfi Structured version   Visualization version   GIF version

Theorem uzinfi 12863
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Hypothesis
Ref Expression
uzinfi.1 𝑀 ∈ ℤ
Assertion
Ref Expression
uzinfi inf((ℤ𝑀), ℝ, < ) = 𝑀

Proof of Theorem uzinfi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzinfi.1 . 2 𝑀 ∈ ℤ
2 ltso 11230 . . . 4 < Or ℝ
32a1i 11 . . 3 (𝑀 ∈ ℤ → < Or ℝ)
4 zre 12509 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 uzid 12784 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
6 eluz2 12775 . . . . 5 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
74adantr 480 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ)
8 zre 12509 . . . . . . . . 9 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
107, 9lenltd 11296 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘 ↔ ¬ 𝑘 < 𝑀))
1110biimp3a 1471 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → ¬ 𝑘 < 𝑀)
1211a1d 25 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀))
136, 12sylbi 217 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀))
1413impcom 407 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
153, 4, 5, 14infmin 9423 . 2 (𝑀 ∈ ℤ → inf((ℤ𝑀), ℝ, < ) = 𝑀)
161, 15ax-mp 5 1 inf((ℤ𝑀), ℝ, < ) = 𝑀
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102   Or wor 5538  cfv 6499  infcinf 9368  cr 11043   < clt 11184  cle 11185  cz 12505  cuz 12769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770
This theorem is referenced by:  nninf  12864  nn0inf  12865
  Copyright terms: Public domain W3C validator