![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzinfi | Structured version Visualization version GIF version |
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
uzinfi.1 | ⊢ 𝑀 ∈ ℤ |
Ref | Expression |
---|---|
uzinfi | ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzinfi.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
2 | ltso 11370 | . . . 4 ⊢ < Or ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → < Or ℝ) |
4 | zre 12643 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | uzid 12918 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
6 | eluz2 12909 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
7 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ) |
8 | zre 12643 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℝ) | |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
10 | 7, 9 | lenltd 11436 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 ≤ 𝑘 ↔ ¬ 𝑘 < 𝑀)) |
11 | 10 | biimp3a 1469 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ¬ 𝑘 < 𝑀) |
12 | 11 | a1d 25 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
13 | 6, 12 | sylbi 217 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
14 | 13 | impcom 407 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ¬ 𝑘 < 𝑀) |
15 | 3, 4, 5, 14 | infmin 9563 | . 2 ⊢ (𝑀 ∈ ℤ → inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀) |
16 | 1, 15 | ax-mp 5 | 1 ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 Or wor 5606 ‘cfv 6573 infcinf 9510 ℝcr 11183 < clt 11324 ≤ cle 11325 ℤcz 12639 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 df-uz 12904 |
This theorem is referenced by: nninf 12994 nn0inf 12995 |
Copyright terms: Public domain | W3C validator |