| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzinfi | Structured version Visualization version GIF version | ||
| Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| uzinfi.1 | ⊢ 𝑀 ∈ ℤ |
| Ref | Expression |
|---|---|
| uzinfi | ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzinfi.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
| 2 | ltso 11254 | . . . 4 ⊢ < Or ℝ | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → < Or ℝ) |
| 4 | zre 12533 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | uzid 12808 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 6 | eluz2 12799 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
| 7 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ) |
| 8 | zre 12533 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℝ) | |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
| 10 | 7, 9 | lenltd 11320 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 ≤ 𝑘 ↔ ¬ 𝑘 < 𝑀)) |
| 11 | 10 | biimp3a 1471 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ¬ 𝑘 < 𝑀) |
| 12 | 11 | a1d 25 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
| 13 | 6, 12 | sylbi 217 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
| 14 | 13 | impcom 407 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ¬ 𝑘 < 𝑀) |
| 15 | 3, 4, 5, 14 | infmin 9447 | . 2 ⊢ (𝑀 ∈ ℤ → inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀) |
| 16 | 1, 15 | ax-mp 5 | 1 ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 Or wor 5545 ‘cfv 6511 infcinf 9392 ℝcr 11067 < clt 11208 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: nninf 12888 nn0inf 12889 |
| Copyright terms: Public domain | W3C validator |