![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzinfi | Structured version Visualization version GIF version |
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
uzinfi.1 | ⊢ 𝑀 ∈ ℤ |
Ref | Expression |
---|---|
uzinfi | ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzinfi.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
2 | ltso 11326 | . . . 4 ⊢ < Or ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → < Or ℝ) |
4 | zre 12595 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | uzid 12870 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
6 | eluz2 12861 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
7 | 4 | adantr 479 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ) |
8 | zre 12595 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℝ) | |
9 | 8 | adantl 480 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
10 | 7, 9 | lenltd 11392 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 ≤ 𝑘 ↔ ¬ 𝑘 < 𝑀)) |
11 | 10 | biimp3a 1465 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ¬ 𝑘 < 𝑀) |
12 | 11 | a1d 25 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
13 | 6, 12 | sylbi 216 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
14 | 13 | impcom 406 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ¬ 𝑘 < 𝑀) |
15 | 3, 4, 5, 14 | infmin 9519 | . 2 ⊢ (𝑀 ∈ ℤ → inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀) |
16 | 1, 15 | ax-mp 5 | 1 ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 Or wor 5589 ‘cfv 6549 infcinf 9466 ℝcr 11139 < clt 11280 ≤ cle 11281 ℤcz 12591 ℤ≥cuz 12855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-neg 11479 df-z 12592 df-uz 12856 |
This theorem is referenced by: nninf 12946 nn0inf 12947 |
Copyright terms: Public domain | W3C validator |