![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inffz | Structured version Visualization version GIF version |
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
inffz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre 12569 | . . . 4 ⊢ ℤ ⊆ ℝ | |
2 | ltso 11298 | . . . 4 ⊢ < Or ℝ | |
3 | soss 5608 | . . . 4 ⊢ (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ)) | |
4 | 1, 2, 3 | mp2 9 | . . 3 ⊢ < Or ℤ |
5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → < Or ℤ) |
6 | eluzel2 12831 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
7 | eluzfz1 13512 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
8 | elfzle1 13508 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
10 | 6 | zred 12670 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
11 | elfzelz 13505 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
12 | 11 | zred 12670 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
13 | lenlt 11296 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀)) | |
14 | 10, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀)) |
15 | 9, 14 | mpbid 231 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑥 < 𝑀) |
16 | 5, 6, 7, 15 | infmin 9491 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 class class class wbr 5148 Or wor 5587 ‘cfv 6543 (class class class)co 7411 infcinf 9438 ℝcr 11111 < clt 11252 ≤ cle 11253 ℤcz 12562 ℤ≥cuz 12826 ...cfz 13488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-neg 11451 df-z 12563 df-uz 12827 df-fz 13489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |