![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inffz | Structured version Visualization version GIF version |
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
inffz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre 12612 | . . . 4 ⊢ ℤ ⊆ ℝ | |
2 | ltso 11340 | . . . 4 ⊢ < Or ℝ | |
3 | soss 5613 | . . . 4 ⊢ (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ)) | |
4 | 1, 2, 3 | mp2 9 | . . 3 ⊢ < Or ℤ |
5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → < Or ℤ) |
6 | eluzel2 12874 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
7 | eluzfz1 13557 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
8 | elfzle1 13553 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
9 | 8 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
10 | 6 | zred 12713 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
11 | elfzelz 13550 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
12 | 11 | zred 12713 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
13 | lenlt 11338 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀)) | |
14 | 10, 12, 13 | syl2an 594 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀)) |
15 | 9, 14 | mpbid 231 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑥 < 𝑀) |
16 | 5, 6, 7, 15 | infmin 9533 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3946 class class class wbr 5152 Or wor 5592 ‘cfv 6553 (class class class)co 7423 infcinf 9480 ℝcr 11153 < clt 11294 ≤ cle 11295 ℤcz 12605 ℤ≥cuz 12869 ...cfz 13533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-pre-lttri 11228 ax-pre-lttrn 11229 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-1st 8002 df-2nd 8003 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-sup 9481 df-inf 9482 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-neg 11493 df-z 12606 df-uz 12870 df-fz 13534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |