Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inffz Structured version   Visualization version   GIF version

Theorem inffz 35500
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
inffz (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)

Proof of Theorem inffz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 12612 . . . 4 ℤ ⊆ ℝ
2 ltso 11340 . . . 4 < Or ℝ
3 soss 5613 . . . 4 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . 3 < Or ℤ
54a1i 11 . 2 (𝑁 ∈ (ℤ𝑀) → < Or ℤ)
6 eluzel2 12874 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7 eluzfz1 13557 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
8 elfzle1 13553 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
98adantl 480 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
106zred 12713 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
11 elfzelz 13550 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
1211zred 12713 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
13 lenlt 11338 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
1410, 12, 13syl2an 594 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
159, 14mpbid 231 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑥 < 𝑀)
165, 6, 7, 15infmin 9533 1 (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3946   class class class wbr 5152   Or wor 5592  cfv 6553  (class class class)co 7423  infcinf 9480  cr 11153   < clt 11294  cle 11295  cz 12605  cuz 12869  ...cfz 13533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-pre-lttri 11228  ax-pre-lttrn 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-sup 9481  df-inf 9482  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-neg 11493  df-z 12606  df-uz 12870  df-fz 13534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator