| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inffz | Structured version Visualization version GIF version | ||
| Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| inffz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssre 12604 | . . . 4 ⊢ ℤ ⊆ ℝ | |
| 2 | ltso 11324 | . . . 4 ⊢ < Or ℝ | |
| 3 | soss 5594 | . . . 4 ⊢ (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ)) | |
| 4 | 1, 2, 3 | mp2 9 | . . 3 ⊢ < Or ℤ |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → < Or ℤ) |
| 6 | eluzel2 12866 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 7 | eluzfz1 13554 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
| 8 | elfzle1 13550 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
| 10 | 6 | zred 12706 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
| 11 | elfzelz 13547 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 12 | 11 | zred 12706 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
| 13 | lenlt 11322 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀)) | |
| 14 | 10, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀)) |
| 15 | 9, 14 | mpbid 232 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑥 < 𝑀) |
| 16 | 5, 6, 7, 15 | infmin 9517 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 class class class wbr 5125 Or wor 5573 ‘cfv 6542 (class class class)co 7414 infcinf 9464 ℝcr 11137 < clt 11278 ≤ cle 11279 ℤcz 12597 ℤ≥cuz 12861 ...cfz 13530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-neg 11478 df-z 12598 df-uz 12862 df-fz 13531 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |