Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inffz Structured version   Visualization version   GIF version

Theorem inffz 35671
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
inffz (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)

Proof of Theorem inffz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 12604 . . . 4 ℤ ⊆ ℝ
2 ltso 11324 . . . 4 < Or ℝ
3 soss 5594 . . . 4 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . 3 < Or ℤ
54a1i 11 . 2 (𝑁 ∈ (ℤ𝑀) → < Or ℤ)
6 eluzel2 12866 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7 eluzfz1 13554 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
8 elfzle1 13550 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
98adantl 481 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
106zred 12706 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
11 elfzelz 13547 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
1211zred 12706 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
13 lenlt 11322 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
1410, 12, 13syl2an 596 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
159, 14mpbid 232 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑥 < 𝑀)
165, 6, 7, 15infmin 9517 1 (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wss 3933   class class class wbr 5125   Or wor 5573  cfv 6542  (class class class)co 7414  infcinf 9464  cr 11137   < clt 11278  cle 11279  cz 12597  cuz 12861  ...cfz 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-neg 11478  df-z 12598  df-uz 12862  df-fz 13531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator