Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inffz Structured version   Visualization version   GIF version

Theorem inffz 35724
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
inffz (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)

Proof of Theorem inffz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 12543 . . . 4 ℤ ⊆ ℝ
2 ltso 11261 . . . 4 < Or ℝ
3 soss 5569 . . . 4 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . 3 < Or ℤ
54a1i 11 . 2 (𝑁 ∈ (ℤ𝑀) → < Or ℤ)
6 eluzel2 12805 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7 eluzfz1 13499 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
8 elfzle1 13495 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
98adantl 481 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
106zred 12645 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
11 elfzelz 13492 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
1211zred 12645 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
13 lenlt 11259 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
1410, 12, 13syl2an 596 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
159, 14mpbid 232 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑥 < 𝑀)
165, 6, 7, 15infmin 9454 1 (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917   class class class wbr 5110   Or wor 5548  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074   < clt 11215  cle 11216  cz 12536  cuz 12800  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-fz 13476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator