Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inffz Structured version   Visualization version   GIF version

Theorem inffz 32858
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
inffz (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)

Proof of Theorem inffz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 11976 . . . 4 ℤ ⊆ ℝ
2 ltso 10709 . . . 4 < Or ℝ
3 soss 5486 . . . 4 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . 3 < Or ℤ
54a1i 11 . 2 (𝑁 ∈ (ℤ𝑀) → < Or ℤ)
6 eluzel2 12236 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7 eluzfz1 12902 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
8 elfzle1 12898 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
98adantl 482 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
106zred 12075 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
11 elfzelz 12896 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
1211zred 12075 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
13 lenlt 10707 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
1410, 12, 13syl2an 595 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
159, 14mpbid 233 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝑥 < 𝑀)
165, 6, 7, 15infmin 8946 1 (𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wss 3933   class class class wbr 5057   Or wor 5466  cfv 6348  (class class class)co 7145  infcinf 8893  cr 10524   < clt 10663  cle 10664  cz 11969  cuz 12231  ...cfz 12880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-neg 10861  df-z 11970  df-uz 12232  df-fz 12881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator