Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemirc Structured version   Visualization version   GIF version

Theorem ballotlemirc 33131
Description: Applying 𝑅 does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemirc (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑘,𝐶   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁
Allowed substitution hints:   𝐶(𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemirc
Dummy variables 𝑦 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . 4 𝑀 ∈ ℕ
2 ballotth.n . . . 4 𝑁 ∈ ℕ
3 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . 4 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . 4 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . 4 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . 4 𝑁 < 𝑀
8 ballotth.i . . . 4 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . 4 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . 4 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrc 33130 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
121, 2, 3, 4, 5, 6, 7, 8ballotlemi 33100 . . 3 ((𝑅𝐶) ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}, ℝ, < ))
1311, 12syl 17 . 2 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}, ℝ, < ))
14 ltso 11235 . . . 4 < Or ℝ
1514a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → < Or ℝ)
161, 2, 3, 4, 5, 6, 7, 8ballotlemiex 33101 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1716simpld 495 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1817elfzelzd 13442 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
1918zred 12607 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℝ)
20 eqid 2736 . . . . 5 (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20ballotlemfrci 33127 . . . 4 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
22 fveqeq2 6851 . . . . 5 (𝑘 = (𝐼𝐶) → (((𝐹‘(𝑅𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0))
2322elrab 3645 . . . 4 ((𝐼𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} ↔ ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0))
2417, 21, 23sylanbrc 583 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
25 elrabi 3639 . . . . 5 (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} → 𝑦 ∈ (1...(𝑀 + 𝑁)))
2625anim2i 617 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}) → (𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))))
27 simpr 485 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼𝐶)) → 𝑦 < (𝐼𝐶))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemfrcn0 33129 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝑦) ≠ 0)
2928neneqd 2948 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼𝐶)) → ¬ ((𝐹‘(𝑅𝐶))‘𝑦) = 0)
30 fveqeq2 6851 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (((𝐹‘(𝑅𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅𝐶))‘𝑦) = 0))
3130elrab 3645 . . . . . . . . . . 11 (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} ↔ (𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅𝐶))‘𝑦) = 0))
3231simprbi 497 . . . . . . . . . 10 (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} → ((𝐹‘(𝑅𝐶))‘𝑦) = 0)
3329, 32nsyl 140 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
34333expa 1118 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
3527, 34syldan 591 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
3635ex 413 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 < (𝐼𝐶) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}))
3736con2d 134 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} → ¬ 𝑦 < (𝐼𝐶)))
3837imp 407 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼𝐶))
3926, 38sylancom 588 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼𝐶))
4015, 19, 24, 39infmin 9430 . 2 (𝐶 ∈ (𝑂𝐸) → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}, ℝ, < ) = (𝐼𝐶))
4113, 40eqtrd 2776 1 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  {crab 3407  cdif 3907  cin 3909  ifcif 4486  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188   Or wor 5544  cima 5636  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  infcinf 9377  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  cz 12499  ...cfz 13424  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-hash 14231
This theorem is referenced by:  ballotlemrinv0  33132
  Copyright terms: Public domain W3C validator