Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemirc Structured version   Visualization version   GIF version

Theorem ballotlemirc 34617
Description: Applying 𝑅 does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemirc (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑘,𝐶   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁
Allowed substitution hints:   𝐶(𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemirc
Dummy variables 𝑦 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . 4 𝑀 ∈ ℕ
2 ballotth.n . . . 4 𝑁 ∈ ℕ
3 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . 4 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . 4 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . 4 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . 4 𝑁 < 𝑀
8 ballotth.i . . . 4 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . 4 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . 4 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrc 34616 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
121, 2, 3, 4, 5, 6, 7, 8ballotlemi 34586 . . 3 ((𝑅𝐶) ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}, ℝ, < ))
1311, 12syl 17 . 2 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}, ℝ, < ))
14 ltso 11204 . . . 4 < Or ℝ
1514a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → < Or ℝ)
161, 2, 3, 4, 5, 6, 7, 8ballotlemiex 34587 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1716simpld 494 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1817elfzelzd 13432 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
1918zred 12587 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℝ)
20 eqid 2733 . . . . 5 (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20ballotlemfrci 34613 . . . 4 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
22 fveqeq2 6840 . . . . 5 (𝑘 = (𝐼𝐶) → (((𝐹‘(𝑅𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0))
2322elrab 3643 . . . 4 ((𝐼𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} ↔ ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0))
2417, 21, 23sylanbrc 583 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
25 elrabi 3639 . . . . 5 (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} → 𝑦 ∈ (1...(𝑀 + 𝑁)))
2625anim2i 617 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}) → (𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))))
27 simpr 484 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼𝐶)) → 𝑦 < (𝐼𝐶))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemfrcn0 34615 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝑦) ≠ 0)
2928neneqd 2934 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼𝐶)) → ¬ ((𝐹‘(𝑅𝐶))‘𝑦) = 0)
30 fveqeq2 6840 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (((𝐹‘(𝑅𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅𝐶))‘𝑦) = 0))
3130elrab 3643 . . . . . . . . . . 11 (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} ↔ (𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅𝐶))‘𝑦) = 0))
3231simprbi 496 . . . . . . . . . 10 (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} → ((𝐹‘(𝑅𝐶))‘𝑦) = 0)
3329, 32nsyl 140 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
34333expa 1118 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
3527, 34syldan 591 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0})
3635ex 412 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 < (𝐼𝐶) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}))
3736con2d 134 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0} → ¬ 𝑦 < (𝐼𝐶)))
3837imp 406 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼𝐶))
3926, 38sylancom 588 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼𝐶))
4015, 19, 24, 39infmin 9391 . 2 (𝐶 ∈ (𝑂𝐸) → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅𝐶))‘𝑘) = 0}, ℝ, < ) = (𝐼𝐶))
4113, 40eqtrd 2768 1 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396  cdif 3895  cin 3897  ifcif 4476  𝒫 cpw 4551   class class class wbr 5095  cmpt 5176   Or wor 5528  cima 5624  cfv 6489  (class class class)co 7355  cmpo 7357  Fincfn 8879  infcinf 9336  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  cz 12479  ...cfz 13414  chash 14244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-hash 14245
This theorem is referenced by:  ballotlemrinv0  34618
  Copyright terms: Public domain W3C validator