| Step | Hyp | Ref
| Expression |
| 1 | | ballotth.m |
. . . 4
⊢ 𝑀 ∈ ℕ |
| 2 | | ballotth.n |
. . . 4
⊢ 𝑁 ∈ ℕ |
| 3 | | ballotth.o |
. . . 4
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| 4 | | ballotth.p |
. . . 4
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| 5 | | ballotth.f |
. . . 4
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
| 6 | | ballotth.e |
. . . 4
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| 7 | | ballotth.mgtn |
. . . 4
⊢ 𝑁 < 𝑀 |
| 8 | | ballotth.i |
. . . 4
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| 9 | | ballotth.s |
. . . 4
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| 10 | | ballotth.r |
. . . 4
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrc 34533 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemi 34503 |
. . 3
⊢ ((𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}, ℝ, < )) |
| 13 | 11, 12 | syl 17 |
. 2
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}, ℝ, < )) |
| 14 | | ltso 11341 |
. . . 4
⊢ < Or
ℝ |
| 15 | 14 | a1i 11 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → < Or ℝ) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 34504 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 17 | 16 | simpld 494 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 18 | 17 | elfzelzd 13565 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
| 19 | 18 | zred 12722 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℝ) |
| 20 | | eqid 2737 |
. . . . 5
⊢ (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
20 | ballotlemfrci 34530 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) |
| 22 | | fveqeq2 6915 |
. . . . 5
⊢ (𝑘 = (𝐼‘𝐶) → (((𝐹‘(𝑅‘𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0)) |
| 23 | 22 | elrab 3692 |
. . . 4
⊢ ((𝐼‘𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} ↔ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0)) |
| 24 | 17, 21, 23 | sylanbrc 583 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 25 | | elrabi 3687 |
. . . . 5
⊢ (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} → 𝑦 ∈ (1...(𝑀 + 𝑁))) |
| 26 | 25 | anim2i 617 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) → (𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)))) |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼‘𝐶)) → 𝑦 < (𝐼‘𝐶)) |
| 28 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemfrcn0 34532 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼‘𝐶)) → ((𝐹‘(𝑅‘𝐶))‘𝑦) ≠ 0) |
| 29 | 28 | neneqd 2945 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0) |
| 30 | | fveqeq2 6915 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → (((𝐹‘(𝑅‘𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0)) |
| 31 | 30 | elrab 3692 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} ↔ (𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0)) |
| 32 | 31 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} → ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0) |
| 33 | 29, 32 | nsyl 140 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 34 | 33 | 3expa 1119 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 35 | 27, 34 | syldan 591 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 36 | 35 | ex 412 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 < (𝐼‘𝐶) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0})) |
| 37 | 36 | con2d 134 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} → ¬ 𝑦 < (𝐼‘𝐶))) |
| 38 | 37 | imp 406 |
. . . 4
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼‘𝐶)) |
| 39 | 26, 38 | sylancom 588 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼‘𝐶)) |
| 40 | 15, 19, 24, 39 | infmin 9534 |
. 2
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}, ℝ, < ) = (𝐼‘𝐶)) |
| 41 | 13, 40 | eqtrd 2777 |
1
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |