MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbinf Structured version   Visualization version   GIF version

Theorem lbinf 12191
Description: If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
lbinf ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Distinct variable group:   𝑥,𝑆,𝑦

Proof of Theorem lbinf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltso 11318 . . 3 < Or ℝ
21a1i 11 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → < Or ℝ)
3 lbcl 12189 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆)
4 ssel 3971 . . . 4 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
54adantr 480 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
63, 5mpd 15 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
76adantr 480 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
8 ssel2 3973 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
98adantlr 714 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
10 lble 12190 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
11103expa 1116 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
127, 9, 11lensymd 11389 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → ¬ 𝑧 < (𝑥𝑆𝑦𝑆 𝑥𝑦))
132, 6, 3, 12infmin 9511 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  wrex 3066  wss 3945   class class class wbr 5142   Or wor 5583  crio 7369  infcinf 9458  cr 11131   < clt 11272  cle 11273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11189  ax-pre-lttri 11206  ax-pre-lttrn 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278
This theorem is referenced by:  lbinfcl  12192  lbinfle  12193
  Copyright terms: Public domain W3C validator