MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbinf Structured version   Visualization version   GIF version

Theorem lbinf 12136
Description: If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
lbinf ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Distinct variable group:   𝑥,𝑆,𝑦

Proof of Theorem lbinf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltso 11254 . . 3 < Or ℝ
21a1i 11 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → < Or ℝ)
3 lbcl 12134 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆)
4 ssel 3940 . . . 4 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
54adantr 480 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
63, 5mpd 15 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
76adantr 480 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
8 ssel2 3941 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
98adantlr 715 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
10 lble 12135 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
11103expa 1118 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
127, 9, 11lensymd 11325 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → ¬ 𝑧 < (𝑥𝑆𝑦𝑆 𝑥𝑦))
132, 6, 3, 12infmin 9447 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   Or wor 5545  crio 7343  infcinf 9392  cr 11067   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  lbinfcl  12137  lbinfle  12138
  Copyright terms: Public domain W3C validator