Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
2 | | simp3 1136 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → 𝑃 ∈ 𝑈) |
3 | | simp2 1135 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → 𝑈 ∈ 𝐽) |
4 | | elunii 4841 |
. . . 4
⊢ ((𝑃 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽) → 𝑃 ∈ ∪ 𝐽) |
5 | 2, 3, 4 | syl2anc 583 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → 𝑃 ∈ ∪ 𝐽) |
6 | | cvmcov.1 |
. . . 4
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
7 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
8 | 6, 7 | cvmcov 33125 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ ∪ 𝐽) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅)) |
9 | 1, 5, 8 | syl2anc 583 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅)) |
10 | | inss2 4160 |
. . . . 5
⊢ (𝑦 ∩ 𝑈) ⊆ 𝑈 |
11 | | vex 3426 |
. . . . . . 7
⊢ 𝑦 ∈ V |
12 | 11 | inex1 5236 |
. . . . . 6
⊢ (𝑦 ∩ 𝑈) ∈ V |
13 | 12 | elpw 4534 |
. . . . 5
⊢ ((𝑦 ∩ 𝑈) ∈ 𝒫 𝑈 ↔ (𝑦 ∩ 𝑈) ⊆ 𝑈) |
14 | 10, 13 | mpbir 230 |
. . . 4
⊢ (𝑦 ∩ 𝑈) ∈ 𝒫 𝑈 |
15 | 14 | a1i 11 |
. . 3
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → (𝑦 ∩ 𝑈) ∈ 𝒫 𝑈) |
16 | | simprrl 777 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → 𝑃 ∈ 𝑦) |
17 | 2 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → 𝑃 ∈ 𝑈) |
18 | 16, 17 | elind 4124 |
. . 3
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → 𝑃 ∈ (𝑦 ∩ 𝑈)) |
19 | | simprrr 778 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → (𝑆‘𝑦) ≠ ∅) |
20 | 1 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
21 | | cvmtop2 33123 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → 𝐽 ∈ Top) |
23 | | simprl 767 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → 𝑦 ∈ 𝐽) |
24 | 3 | adantr 480 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → 𝑈 ∈ 𝐽) |
25 | | inopn 21956 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝑈 ∈ 𝐽) → (𝑦 ∩ 𝑈) ∈ 𝐽) |
26 | 22, 23, 24, 25 | syl3anc 1369 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → (𝑦 ∩ 𝑈) ∈ 𝐽) |
27 | | inss1 4159 |
. . . . . 6
⊢ (𝑦 ∩ 𝑈) ⊆ 𝑦 |
28 | 27 | a1i 11 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → (𝑦 ∩ 𝑈) ⊆ 𝑦) |
29 | 6 | cvmsss2 33136 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑦 ∩ 𝑈) ∈ 𝐽 ∧ (𝑦 ∩ 𝑈) ⊆ 𝑦) → ((𝑆‘𝑦) ≠ ∅ → (𝑆‘(𝑦 ∩ 𝑈)) ≠ ∅)) |
30 | 20, 26, 28, 29 | syl3anc 1369 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → ((𝑆‘𝑦) ≠ ∅ → (𝑆‘(𝑦 ∩ 𝑈)) ≠ ∅)) |
31 | 19, 30 | mpd 15 |
. . 3
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → (𝑆‘(𝑦 ∩ 𝑈)) ≠ ∅) |
32 | | eleq2 2827 |
. . . . 5
⊢ (𝑥 = (𝑦 ∩ 𝑈) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑦 ∩ 𝑈))) |
33 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∩ 𝑈) → (𝑆‘𝑥) = (𝑆‘(𝑦 ∩ 𝑈))) |
34 | 33 | neeq1d 3002 |
. . . . 5
⊢ (𝑥 = (𝑦 ∩ 𝑈) → ((𝑆‘𝑥) ≠ ∅ ↔ (𝑆‘(𝑦 ∩ 𝑈)) ≠ ∅)) |
35 | 32, 34 | anbi12d 630 |
. . . 4
⊢ (𝑥 = (𝑦 ∩ 𝑈) → ((𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ (𝑃 ∈ (𝑦 ∩ 𝑈) ∧ (𝑆‘(𝑦 ∩ 𝑈)) ≠ ∅))) |
36 | 35 | rspcev 3552 |
. . 3
⊢ (((𝑦 ∩ 𝑈) ∈ 𝒫 𝑈 ∧ (𝑃 ∈ (𝑦 ∩ 𝑈) ∧ (𝑆‘(𝑦 ∩ 𝑈)) ≠ ∅)) → ∃𝑥 ∈ 𝒫 𝑈(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
37 | 15, 18, 31, 36 | syl12anc 833 |
. 2
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑦 ∈ 𝐽 ∧ (𝑃 ∈ 𝑦 ∧ (𝑆‘𝑦) ≠ ∅))) → ∃𝑥 ∈ 𝒫 𝑈(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
38 | 9, 37 | rexlimddv 3219 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |