Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov2 Structured version   Visualization version   GIF version

Theorem cvmcov2 35243
Description: The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmcov2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑃,𝑘,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmcov2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝐹 ∈ (𝐶 CovMap 𝐽))
2 simp3 1138 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑃𝑈)
3 simp2 1137 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑈𝐽)
4 elunii 4936 . . . 4 ((𝑃𝑈𝑈𝐽) → 𝑃 𝐽)
52, 3, 4syl2anc 583 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑃 𝐽)
6 cvmcov.1 . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
7 eqid 2740 . . . 4 𝐽 = 𝐽
86, 7cvmcov 35231 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 𝐽) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))
91, 5, 8syl2anc 583 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))
10 inss2 4259 . . . . 5 (𝑦𝑈) ⊆ 𝑈
11 vex 3492 . . . . . . 7 𝑦 ∈ V
1211inex1 5335 . . . . . 6 (𝑦𝑈) ∈ V
1312elpw 4626 . . . . 5 ((𝑦𝑈) ∈ 𝒫 𝑈 ↔ (𝑦𝑈) ⊆ 𝑈)
1410, 13mpbir 231 . . . 4 (𝑦𝑈) ∈ 𝒫 𝑈
1514a1i 11 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ∈ 𝒫 𝑈)
16 simprrl 780 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃𝑦)
172adantr 480 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃𝑈)
1816, 17elind 4223 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃 ∈ (𝑦𝑈))
19 simprrr 781 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑆𝑦) ≠ ∅)
201adantr 480 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
21 cvmtop2 35229 . . . . . . 7 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
2220, 21syl 17 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝐽 ∈ Top)
23 simprl 770 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑦𝐽)
243adantr 480 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑈𝐽)
25 inopn 22926 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝐽𝑈𝐽) → (𝑦𝑈) ∈ 𝐽)
2622, 23, 24, 25syl3anc 1371 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ∈ 𝐽)
27 inss1 4258 . . . . . 6 (𝑦𝑈) ⊆ 𝑦
2827a1i 11 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ⊆ 𝑦)
296cvmsss2 35242 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑦𝑈) ∈ 𝐽 ∧ (𝑦𝑈) ⊆ 𝑦) → ((𝑆𝑦) ≠ ∅ → (𝑆‘(𝑦𝑈)) ≠ ∅))
3020, 26, 28, 29syl3anc 1371 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → ((𝑆𝑦) ≠ ∅ → (𝑆‘(𝑦𝑈)) ≠ ∅))
3119, 30mpd 15 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑆‘(𝑦𝑈)) ≠ ∅)
32 eleq2 2833 . . . . 5 (𝑥 = (𝑦𝑈) → (𝑃𝑥𝑃 ∈ (𝑦𝑈)))
33 fveq2 6920 . . . . . 6 (𝑥 = (𝑦𝑈) → (𝑆𝑥) = (𝑆‘(𝑦𝑈)))
3433neeq1d 3006 . . . . 5 (𝑥 = (𝑦𝑈) → ((𝑆𝑥) ≠ ∅ ↔ (𝑆‘(𝑦𝑈)) ≠ ∅))
3532, 34anbi12d 631 . . . 4 (𝑥 = (𝑦𝑈) → ((𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ (𝑃 ∈ (𝑦𝑈) ∧ (𝑆‘(𝑦𝑈)) ≠ ∅)))
3635rspcev 3635 . . 3 (((𝑦𝑈) ∈ 𝒫 𝑈 ∧ (𝑃 ∈ (𝑦𝑈) ∧ (𝑆‘(𝑦𝑈)) ≠ ∅)) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
3715, 18, 31, 36syl12anc 836 . 2 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
389, 37rexlimddv 3167 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cres 5702  cima 5703  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  Homeochmeo 23782   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-hmeo 23784  df-cvm 35224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator