Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov2 Structured version   Visualization version   GIF version

Theorem cvmcov2 33343
Description: The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmcov2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑃,𝑘,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmcov2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝐹 ∈ (𝐶 CovMap 𝐽))
2 simp3 1137 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑃𝑈)
3 simp2 1136 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑈𝐽)
4 elunii 4853 . . . 4 ((𝑃𝑈𝑈𝐽) → 𝑃 𝐽)
52, 3, 4syl2anc 584 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑃 𝐽)
6 cvmcov.1 . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
7 eqid 2737 . . . 4 𝐽 = 𝐽
86, 7cvmcov 33331 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 𝐽) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))
91, 5, 8syl2anc 584 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))
10 inss2 4173 . . . . 5 (𝑦𝑈) ⊆ 𝑈
11 vex 3445 . . . . . . 7 𝑦 ∈ V
1211inex1 5254 . . . . . 6 (𝑦𝑈) ∈ V
1312elpw 4547 . . . . 5 ((𝑦𝑈) ∈ 𝒫 𝑈 ↔ (𝑦𝑈) ⊆ 𝑈)
1410, 13mpbir 230 . . . 4 (𝑦𝑈) ∈ 𝒫 𝑈
1514a1i 11 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ∈ 𝒫 𝑈)
16 simprrl 778 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃𝑦)
172adantr 481 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃𝑈)
1816, 17elind 4138 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃 ∈ (𝑦𝑈))
19 simprrr 779 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑆𝑦) ≠ ∅)
201adantr 481 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
21 cvmtop2 33329 . . . . . . 7 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
2220, 21syl 17 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝐽 ∈ Top)
23 simprl 768 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑦𝐽)
243adantr 481 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑈𝐽)
25 inopn 22119 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝐽𝑈𝐽) → (𝑦𝑈) ∈ 𝐽)
2622, 23, 24, 25syl3anc 1370 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ∈ 𝐽)
27 inss1 4172 . . . . . 6 (𝑦𝑈) ⊆ 𝑦
2827a1i 11 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ⊆ 𝑦)
296cvmsss2 33342 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑦𝑈) ∈ 𝐽 ∧ (𝑦𝑈) ⊆ 𝑦) → ((𝑆𝑦) ≠ ∅ → (𝑆‘(𝑦𝑈)) ≠ ∅))
3020, 26, 28, 29syl3anc 1370 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → ((𝑆𝑦) ≠ ∅ → (𝑆‘(𝑦𝑈)) ≠ ∅))
3119, 30mpd 15 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑆‘(𝑦𝑈)) ≠ ∅)
32 eleq2 2826 . . . . 5 (𝑥 = (𝑦𝑈) → (𝑃𝑥𝑃 ∈ (𝑦𝑈)))
33 fveq2 6809 . . . . . 6 (𝑥 = (𝑦𝑈) → (𝑆𝑥) = (𝑆‘(𝑦𝑈)))
3433neeq1d 3001 . . . . 5 (𝑥 = (𝑦𝑈) → ((𝑆𝑥) ≠ ∅ ↔ (𝑆‘(𝑦𝑈)) ≠ ∅))
3532, 34anbi12d 631 . . . 4 (𝑥 = (𝑦𝑈) → ((𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ (𝑃 ∈ (𝑦𝑈) ∧ (𝑆‘(𝑦𝑈)) ≠ ∅)))
3635rspcev 3570 . . 3 (((𝑦𝑈) ∈ 𝒫 𝑈 ∧ (𝑃 ∈ (𝑦𝑈) ∧ (𝑆‘(𝑦𝑈)) ≠ ∅)) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
3715, 18, 31, 36syl12anc 834 . 2 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
389, 37rexlimddv 3155 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wral 3062  wrex 3071  {crab 3404  cdif 3893  cin 3895  wss 3896  c0 4266  𝒫 cpw 4543  {csn 4569   cuni 4848  cmpt 5168  ccnv 5604  cres 5607  cima 5608  cfv 6463  (class class class)co 7313  t crest 17198  Topctop 22113  Homeochmeo 22975   CovMap ccvm 33323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-map 8663  df-en 8780  df-fin 8783  df-fi 9238  df-rest 17200  df-topgen 17221  df-top 22114  df-topon 22131  df-bases 22167  df-cn 22449  df-hmeo 22977  df-cvm 33324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator