Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov2 Structured version   Visualization version   GIF version

Theorem cvmcov2 35247
Description: The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmcov2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑃,𝑘,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmcov2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝐹 ∈ (𝐶 CovMap 𝐽))
2 simp3 1138 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑃𝑈)
3 simp2 1137 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑈𝐽)
4 elunii 4866 . . . 4 ((𝑃𝑈𝑈𝐽) → 𝑃 𝐽)
52, 3, 4syl2anc 584 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → 𝑃 𝐽)
6 cvmcov.1 . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
7 eqid 2729 . . . 4 𝐽 = 𝐽
86, 7cvmcov 35235 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 𝐽) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))
91, 5, 8syl2anc 584 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))
10 inss2 4191 . . . . 5 (𝑦𝑈) ⊆ 𝑈
11 vex 3442 . . . . . . 7 𝑦 ∈ V
1211inex1 5259 . . . . . 6 (𝑦𝑈) ∈ V
1312elpw 4557 . . . . 5 ((𝑦𝑈) ∈ 𝒫 𝑈 ↔ (𝑦𝑈) ⊆ 𝑈)
1410, 13mpbir 231 . . . 4 (𝑦𝑈) ∈ 𝒫 𝑈
1514a1i 11 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ∈ 𝒫 𝑈)
16 simprrl 780 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃𝑦)
172adantr 480 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃𝑈)
1816, 17elind 4153 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑃 ∈ (𝑦𝑈))
19 simprrr 781 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑆𝑦) ≠ ∅)
201adantr 480 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
21 cvmtop2 35233 . . . . . . 7 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
2220, 21syl 17 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝐽 ∈ Top)
23 simprl 770 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑦𝐽)
243adantr 480 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → 𝑈𝐽)
25 inopn 22802 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝐽𝑈𝐽) → (𝑦𝑈) ∈ 𝐽)
2622, 23, 24, 25syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ∈ 𝐽)
27 inss1 4190 . . . . . 6 (𝑦𝑈) ⊆ 𝑦
2827a1i 11 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑦𝑈) ⊆ 𝑦)
296cvmsss2 35246 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑦𝑈) ∈ 𝐽 ∧ (𝑦𝑈) ⊆ 𝑦) → ((𝑆𝑦) ≠ ∅ → (𝑆‘(𝑦𝑈)) ≠ ∅))
3020, 26, 28, 29syl3anc 1373 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → ((𝑆𝑦) ≠ ∅ → (𝑆‘(𝑦𝑈)) ≠ ∅))
3119, 30mpd 15 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → (𝑆‘(𝑦𝑈)) ≠ ∅)
32 eleq2 2817 . . . . 5 (𝑥 = (𝑦𝑈) → (𝑃𝑥𝑃 ∈ (𝑦𝑈)))
33 fveq2 6826 . . . . . 6 (𝑥 = (𝑦𝑈) → (𝑆𝑥) = (𝑆‘(𝑦𝑈)))
3433neeq1d 2984 . . . . 5 (𝑥 = (𝑦𝑈) → ((𝑆𝑥) ≠ ∅ ↔ (𝑆‘(𝑦𝑈)) ≠ ∅))
3532, 34anbi12d 632 . . . 4 (𝑥 = (𝑦𝑈) → ((𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ (𝑃 ∈ (𝑦𝑈) ∧ (𝑆‘(𝑦𝑈)) ≠ ∅)))
3635rspcev 3579 . . 3 (((𝑦𝑈) ∈ 𝒫 𝑈 ∧ (𝑃 ∈ (𝑦𝑈) ∧ (𝑆‘(𝑦𝑈)) ≠ ∅)) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
3715, 18, 31, 36syl12anc 836 . 2 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) ∧ (𝑦𝐽 ∧ (𝑃𝑦 ∧ (𝑆𝑦) ≠ ∅))) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
389, 37rexlimddv 3136 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  cdif 3902  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861  cmpt 5176  ccnv 5622  cres 5625  cima 5626  cfv 6486  (class class class)co 7353  t crest 17342  Topctop 22796  Homeochmeo 23656   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-map 8762  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-cn 23130  df-hmeo 23658  df-cvm 35228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator