Proof of Theorem ntrin
Step | Hyp | Ref
| Expression |
1 | | inss1 4143 |
. . . . 5
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
2 | | clscld.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | ntrss 21952 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) ⊆ ((int‘𝐽)‘𝐴)) |
4 | 1, 3 | mp3an3 1452 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) ⊆ ((int‘𝐽)‘𝐴)) |
5 | 4 | 3adant3 1134 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) ⊆ ((int‘𝐽)‘𝐴)) |
6 | | inss2 4144 |
. . . . 5
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
7 | 2 | ntrss 21952 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) ⊆ ((int‘𝐽)‘𝐵)) |
8 | 6, 7 | mp3an3 1452 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) ⊆ ((int‘𝐽)‘𝐵)) |
9 | 8 | 3adant2 1133 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) ⊆ ((int‘𝐽)‘𝐵)) |
10 | 5, 9 | ssind 4147 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) ⊆ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵))) |
11 | | simp1 1138 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → 𝐽 ∈ Top) |
12 | | ssinss1 4152 |
. . . 4
⊢ (𝐴 ⊆ 𝑋 → (𝐴 ∩ 𝐵) ⊆ 𝑋) |
13 | 12 | 3ad2ant2 1136 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∩ 𝐵) ⊆ 𝑋) |
14 | 2 | ntropn 21946 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
15 | 14 | 3adant3 1134 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
16 | 2 | ntropn 21946 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽) |
17 | 16 | 3adant2 1133 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽) |
18 | | inopn 21796 |
. . . 4
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ ((int‘𝐽)‘𝐵) ∈ 𝐽) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽) |
19 | 11, 15, 17, 18 | syl3anc 1373 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽) |
20 | | inss1 4143 |
. . . . 5
⊢
(((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐴) |
21 | 2 | ntrss2 21954 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
22 | 21 | 3adant3 1134 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
23 | 20, 22 | sstrid 3912 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐴) |
24 | | inss2 4144 |
. . . . 5
⊢
(((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐵) |
25 | 2 | ntrss2 21954 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵) |
26 | 25 | 3adant2 1133 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵) |
27 | 24, 26 | sstrid 3912 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐵) |
28 | 23, 27 | ssind 4147 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴 ∩ 𝐵)) |
29 | 2 | ssntr 21955 |
. . 3
⊢ (((𝐽 ∈ Top ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) ∧ ((((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽 ∧ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴 ∩ 𝐵))) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴 ∩ 𝐵))) |
30 | 11, 13, 19, 28, 29 | syl22anc 839 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴 ∩ 𝐵))) |
31 | 10, 30 | eqssd 3918 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵))) |