MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrin Structured version   Visualization version   GIF version

Theorem ntrin 22885
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ntrin ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) = (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)))

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 4228 . . . . 5 (𝐴 ∩ 𝐡) βŠ† 𝐴
2 clscld.1 . . . . . 6 𝑋 = βˆͺ 𝐽
32ntrss 22879 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ (𝐴 ∩ 𝐡) βŠ† 𝐴) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) βŠ† ((intβ€˜π½)β€˜π΄))
41, 3mp3an3 1449 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) βŠ† ((intβ€˜π½)β€˜π΄))
543adant3 1131 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) βŠ† ((intβ€˜π½)β€˜π΄))
6 inss2 4229 . . . . 5 (𝐴 ∩ 𝐡) βŠ† 𝐡
72ntrss 22879 . . . . 5 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝑋 ∧ (𝐴 ∩ 𝐡) βŠ† 𝐡) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) βŠ† ((intβ€˜π½)β€˜π΅))
86, 7mp3an3 1449 . . . 4 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) βŠ† ((intβ€˜π½)β€˜π΅))
983adant2 1130 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) βŠ† ((intβ€˜π½)β€˜π΅))
105, 9ssind 4232 . 2 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) βŠ† (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)))
11 simp1 1135 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ 𝐽 ∈ Top)
12 ssinss1 4237 . . . 4 (𝐴 βŠ† 𝑋 β†’ (𝐴 ∩ 𝐡) βŠ† 𝑋)
13123ad2ant2 1133 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ (𝐴 ∩ 𝐡) βŠ† 𝑋)
142ntropn 22873 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) ∈ 𝐽)
15143adant3 1131 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) ∈ 𝐽)
162ntropn 22873 . . . . 5 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΅) ∈ 𝐽)
17163adant2 1130 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΅) ∈ 𝐽)
18 inopn 22721 . . . 4 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π΄) ∈ 𝐽 ∧ ((intβ€˜π½)β€˜π΅) ∈ 𝐽) β†’ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) ∈ 𝐽)
1911, 15, 17, 18syl3anc 1370 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) ∈ 𝐽)
20 inss1 4228 . . . . 5 (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† ((intβ€˜π½)β€˜π΄)
212ntrss2 22881 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) βŠ† 𝐴)
22213adant3 1131 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) βŠ† 𝐴)
2320, 22sstrid 3993 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† 𝐴)
24 inss2 4229 . . . . 5 (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† ((intβ€˜π½)β€˜π΅)
252ntrss2 22881 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΅) βŠ† 𝐡)
26253adant2 1130 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΅) βŠ† 𝐡)
2724, 26sstrid 3993 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† 𝐡)
2823, 27ssind 4232 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† (𝐴 ∩ 𝐡))
292ssntr 22882 . . 3 (((𝐽 ∈ Top ∧ (𝐴 ∩ 𝐡) βŠ† 𝑋) ∧ ((((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) ∈ 𝐽 ∧ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† (𝐴 ∩ 𝐡))) β†’ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)))
3011, 13, 19, 28, 29syl22anc 836 . 2 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)) βŠ† ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)))
3110, 30eqssd 3999 1 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋 ∧ 𝐡 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜(𝐴 ∩ 𝐡)) = (((intβ€˜π½)β€˜π΄) ∩ ((intβ€˜π½)β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   ∩ cin 3947   βŠ† wss 3948  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22715  intcnt 22841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22716  df-cld 22843  df-ntr 22844  df-cls 22845
This theorem is referenced by:  dvreslem  25758  dvaddbr  25788  dvmulbr  25789  dvmulbrOLD  25790  clsun  35677  neiin  35681
  Copyright terms: Public domain W3C validator