MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopnb Structured version   Visualization version   GIF version

Theorem restopnb 21775
Description: If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopnb (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))

Proof of Theorem restopnb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1191 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶𝐵)
2 simpr2 1190 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐵𝐴)
31, 2sstrd 3975 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶𝐴)
4 df-ss 3950 . . . . . 6 (𝐶𝐴 ↔ (𝐶𝐴) = 𝐶)
53, 4sylib 220 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐴) = 𝐶)
65eqcomd 2825 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶 = (𝐶𝐴))
7 ineq1 4179 . . . . . 6 (𝑣 = 𝐶 → (𝑣𝐴) = (𝐶𝐴))
87rspceeqv 3636 . . . . 5 ((𝐶𝐽𝐶 = (𝐶𝐴)) → ∃𝑣𝐽 𝐶 = (𝑣𝐴))
98expcom 416 . . . 4 (𝐶 = (𝐶𝐴) → (𝐶𝐽 → ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
106, 9syl 17 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽 → ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
11 inass 4194 . . . . . 6 ((𝑣𝐴) ∩ 𝐵) = (𝑣 ∩ (𝐴𝐵))
12 simprr 771 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶 = (𝑣𝐴))
1312ineq1d 4186 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝐶𝐵) = ((𝑣𝐴) ∩ 𝐵))
14 simplr3 1212 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → 𝐶𝐵)
15 df-ss 3950 . . . . . . . . 9 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐶)
1614, 15sylib 220 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝐶𝐵) = 𝐶)
1716adantrr 715 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝐶𝐵) = 𝐶)
1813, 17eqtr3d 2856 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → ((𝑣𝐴) ∩ 𝐵) = 𝐶)
19 simplr2 1211 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → 𝐵𝐴)
20 sseqin2 4190 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
2119, 20sylib 220 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝐴𝐵) = 𝐵)
2221ineq2d 4187 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝑣 ∩ (𝐴𝐵)) = (𝑣𝐵))
2322adantrr 715 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝑣 ∩ (𝐴𝐵)) = (𝑣𝐵))
2411, 18, 233eqtr3a 2878 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶 = (𝑣𝐵))
25 simplll 773 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐽 ∈ Top)
26 simprl 769 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝑣𝐽)
27 simplr1 1210 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐵𝐽)
28 inopn 21499 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑣𝐽𝐵𝐽) → (𝑣𝐵) ∈ 𝐽)
2925, 26, 27, 28syl3anc 1366 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝑣𝐵) ∈ 𝐽)
3024, 29eqeltrd 2911 . . . 4 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶𝐽)
3130rexlimdvaa 3283 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (∃𝑣𝐽 𝐶 = (𝑣𝐴) → 𝐶𝐽))
3210, 31impbid 214 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽 ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
33 elrest 16693 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐶 ∈ (𝐽t 𝐴) ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
3433adantr 483 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶 ∈ (𝐽t 𝐴) ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
3532, 34bitr4d 284 1 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wrex 3137  cin 3933  wss 3934  (class class class)co 7148  t crest 16686  Topctop 21493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-rest 16688  df-top 21494
This theorem is referenced by:  restopn2  21777  cxpcn3  25321  pnfneige0  31187  fourierdlem62  42443  fouriersw  42506
  Copyright terms: Public domain W3C validator