MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopnb Structured version   Visualization version   GIF version

Theorem restopnb 23204
Description: If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopnb (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))

Proof of Theorem restopnb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1196 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶𝐵)
2 simpr2 1195 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐵𝐴)
31, 2sstrd 4019 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶𝐴)
4 dfss2 3994 . . . . . 6 (𝐶𝐴 ↔ (𝐶𝐴) = 𝐶)
53, 4sylib 218 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐴) = 𝐶)
65eqcomd 2746 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶 = (𝐶𝐴))
7 ineq1 4234 . . . . . 6 (𝑣 = 𝐶 → (𝑣𝐴) = (𝐶𝐴))
87rspceeqv 3658 . . . . 5 ((𝐶𝐽𝐶 = (𝐶𝐴)) → ∃𝑣𝐽 𝐶 = (𝑣𝐴))
98expcom 413 . . . 4 (𝐶 = (𝐶𝐴) → (𝐶𝐽 → ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
106, 9syl 17 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽 → ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
11 inass 4249 . . . . . 6 ((𝑣𝐴) ∩ 𝐵) = (𝑣 ∩ (𝐴𝐵))
12 simprr 772 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶 = (𝑣𝐴))
1312ineq1d 4240 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝐶𝐵) = ((𝑣𝐴) ∩ 𝐵))
14 simplr3 1217 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → 𝐶𝐵)
15 dfss2 3994 . . . . . . . . 9 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐶)
1614, 15sylib 218 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝐶𝐵) = 𝐶)
1716adantrr 716 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝐶𝐵) = 𝐶)
1813, 17eqtr3d 2782 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → ((𝑣𝐴) ∩ 𝐵) = 𝐶)
19 simplr2 1216 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → 𝐵𝐴)
20 sseqin2 4244 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
2119, 20sylib 218 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝐴𝐵) = 𝐵)
2221ineq2d 4241 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝑣 ∩ (𝐴𝐵)) = (𝑣𝐵))
2322adantrr 716 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝑣 ∩ (𝐴𝐵)) = (𝑣𝐵))
2411, 18, 233eqtr3a 2804 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶 = (𝑣𝐵))
25 simplll 774 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐽 ∈ Top)
26 simprl 770 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝑣𝐽)
27 simplr1 1215 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐵𝐽)
28 inopn 22926 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑣𝐽𝐵𝐽) → (𝑣𝐵) ∈ 𝐽)
2925, 26, 27, 28syl3anc 1371 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝑣𝐵) ∈ 𝐽)
3024, 29eqeltrd 2844 . . . 4 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶𝐽)
3130rexlimdvaa 3162 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (∃𝑣𝐽 𝐶 = (𝑣𝐴) → 𝐶𝐽))
3210, 31impbid 212 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽 ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
33 elrest 17487 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐶 ∈ (𝐽t 𝐴) ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
3433adantr 480 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶 ∈ (𝐽t 𝐴) ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
3532, 34bitr4d 282 1 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cin 3975  wss 3976  (class class class)co 7448  t crest 17480  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rest 17482  df-top 22921
This theorem is referenced by:  restopn2  23206  cxpcn3  26809  pnfneige0  33897  fourierdlem62  46089  fouriersw  46152  iooii  48597
  Copyright terms: Public domain W3C validator