![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fitop | Structured version Visualization version GIF version |
Description: A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009.) |
Ref | Expression |
---|---|
fitop | ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inopn 22401 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∩ 𝑦) ∈ 𝐽) | |
2 | 1 | 3expib 1123 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∩ 𝑦) ∈ 𝐽)) |
3 | 2 | ralrimivv 3199 | . 2 ⊢ (𝐽 ∈ Top → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) |
4 | inficl 9420 | . 2 ⊢ (𝐽 ∈ Top → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽 ↔ (fi‘𝐽) = 𝐽)) | |
5 | 3, 4 | mpbid 231 | 1 ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∩ cin 3948 ‘cfv 6544 ficfi 9405 Topctop 22395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-er 8703 df-en 8940 df-fin 8943 df-fi 9406 df-top 22396 |
This theorem is referenced by: tgfiss 22494 leordtval2 22716 2ndcsb 22953 alexsubALTlem1 23551 prdsxmslem2 24038 |
Copyright terms: Public domain | W3C validator |