MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fitop Structured version   Visualization version   GIF version

Theorem fitop 22785
Description: A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009.)
Assertion
Ref Expression
fitop (𝐽 ∈ Top → (fi‘𝐽) = 𝐽)

Proof of Theorem fitop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopn 22784 . . . 4 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝐽) → (𝑥𝑦) ∈ 𝐽)
213expib 1122 . . 3 (𝐽 ∈ Top → ((𝑥𝐽𝑦𝐽) → (𝑥𝑦) ∈ 𝐽))
32ralrimivv 3170 . 2 (𝐽 ∈ Top → ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)
4 inficl 9315 . 2 (𝐽 ∈ Top → (∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽 ↔ (fi‘𝐽) = 𝐽))
53, 4mpbid 232 1 (𝐽 ∈ Top → (fi‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  cin 3902  cfv 6482  ficfi 9300  Topctop 22778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-2o 8389  df-en 8873  df-fin 8876  df-fi 9301  df-top 22779
This theorem is referenced by:  tgfiss  22876  leordtval2  23097  2ndcsb  23334  alexsubALTlem1  23932  prdsxmslem2  24415
  Copyright terms: Public domain W3C validator