Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtopn3 | Structured version Visualization version GIF version |
Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
ordtopn3 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inrab 4240 | . 2 ⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} | |
2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | ordttopon 22344 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
4 | 3 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
5 | topontop 22062 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ Top) |
7 | 2 | ordtopn1 22345 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
8 | 7 | 3adant3 1131 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
9 | 2 | ordtopn2 22346 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
10 | 9 | 3adant2 1130 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
11 | inopn 22048 | . . 3 ⊢ (((ordTop‘𝑅) ∈ Top ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) | |
12 | 6, 8, 10, 11 | syl3anc 1370 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) |
13 | 1, 12 | eqeltrrid 2844 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ∩ cin 3886 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 ordTopcordt 17210 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-fin 8737 df-fi 9170 df-topgen 17154 df-ordt 17212 df-top 22043 df-topon 22060 df-bases 22096 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |