|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ordtopn3 | Structured version Visualization version GIF version | ||
| Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | 
| Ref | Expression | 
|---|---|
| ordtopn3 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inrab 4315 | . 2 ⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} | |
| 2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 2 | ordttopon 23202 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) | 
| 4 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) | 
| 5 | topontop 22920 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ Top) | 
| 7 | 2 | ordtopn1 23203 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) | 
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) | 
| 9 | 2 | ordtopn2 23204 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) | 
| 10 | 9 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) | 
| 11 | inopn 22906 | . . 3 ⊢ (((ordTop‘𝑅) ∈ Top ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) | |
| 12 | 6, 8, 10, 11 | syl3anc 1372 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) | 
| 13 | 1, 12 | eqeltrrid 2845 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3435 ∩ cin 3949 class class class wbr 5142 dom cdm 5684 ‘cfv 6560 ordTopcordt 17545 Topctop 22900 TopOnctopon 22917 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1o 8507 df-2o 8508 df-en 8987 df-fin 8990 df-fi 9452 df-topgen 17489 df-ordt 17547 df-top 22901 df-topon 22918 df-bases 22954 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |