MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn3 Structured version   Visualization version   GIF version

Theorem ordtopn3 23220
Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn3
StepHypRef Expression
1 inrab 4322 . 2 ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)}
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 23217 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
433ad2ant1 1132 . . . 4 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 topontop 22935 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
64, 5syl 17 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ Top)
72ordtopn1 23218 . . . 4 ((𝑅𝑉𝐴𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
873adant3 1131 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
92ordtopn2 23219 . . . 4 ((𝑅𝑉𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
1093adant2 1130 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
11 inopn 22921 . . 3 (((ordTop‘𝑅) ∈ Top ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
126, 8, 10, 11syl3anc 1370 . 2 ((𝑅𝑉𝐴𝑋𝐵𝑋) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
131, 12eqeltrrid 2844 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  cin 3962   class class class wbr 5148  dom cdm 5689  cfv 6563  ordTopcordt 17546  Topctop 22915  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-en 8985  df-fin 8988  df-fi 9449  df-topgen 17490  df-ordt 17548  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator