MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn3 Structured version   Visualization version   GIF version

Theorem ordtopn3 23111
Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn3
StepHypRef Expression
1 inrab 4263 . 2 ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)}
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 23108 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
433ad2ant1 1133 . . . 4 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 topontop 22828 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
64, 5syl 17 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ Top)
72ordtopn1 23109 . . . 4 ((𝑅𝑉𝐴𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
873adant3 1132 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
92ordtopn2 23110 . . . 4 ((𝑅𝑉𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
1093adant2 1131 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
11 inopn 22814 . . 3 (((ordTop‘𝑅) ∈ Top ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
126, 8, 10, 11syl3anc 1373 . 2 ((𝑅𝑉𝐴𝑋𝐵𝑋) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
131, 12eqeltrrid 2836 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  cin 3896   class class class wbr 5089  dom cdm 5614  cfv 6481  ordTopcordt 17403  Topctop 22808  TopOnctopon 22825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870  df-fin 8873  df-fi 9295  df-topgen 17347  df-ordt 17405  df-top 22809  df-topon 22826  df-bases 22861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator