| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtopn3 | Structured version Visualization version GIF version | ||
| Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| ordtopn3 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab 4296 | . 2 ⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} | |
| 2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 2 | ordttopon 23136 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
| 4 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
| 5 | topontop 22856 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ Top) |
| 7 | 2 | ordtopn1 23137 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
| 9 | 2 | ordtopn2 23138 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 10 | 9 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 11 | inopn 22842 | . . 3 ⊢ (((ordTop‘𝑅) ∈ Top ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) | |
| 12 | 6, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) |
| 13 | 1, 12 | eqeltrrid 2840 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 ∩ cin 3930 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 ordTopcordt 17518 Topctop 22836 TopOnctopon 22853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-en 8965 df-fin 8968 df-fi 9428 df-topgen 17462 df-ordt 17520 df-top 22837 df-topon 22854 df-bases 22889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |