| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtopn3 | Structured version Visualization version GIF version | ||
| Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| ordtopn3 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab 4275 | . 2 ⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} | |
| 2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 2 | ordttopon 23113 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
| 4 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
| 5 | topontop 22833 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (ordTop‘𝑅) ∈ Top) |
| 7 | 2 | ordtopn1 23114 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅)) |
| 9 | 2 | ordtopn2 23115 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 10 | 9 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 11 | inopn 22819 | . . 3 ⊢ (((ordTop‘𝑅) ∈ Top ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) | |
| 12 | 6, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥 ∈ 𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅)) |
| 13 | 1, 12 | eqeltrrid 2833 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3402 ∩ cin 3910 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 ordTopcordt 17438 Topctop 22813 TopOnctopon 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-2o 8412 df-en 8896 df-fin 8899 df-fi 9338 df-topgen 17382 df-ordt 17440 df-top 22814 df-topon 22831 df-bases 22866 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |