MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn3 Structured version   Visualization version   GIF version

Theorem ordtopn3 22255
Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn3
StepHypRef Expression
1 inrab 4237 . 2 ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)}
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 22252 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
433ad2ant1 1131 . . . 4 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 topontop 21970 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
64, 5syl 17 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ Top)
72ordtopn1 22253 . . . 4 ((𝑅𝑉𝐴𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
873adant3 1130 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
92ordtopn2 22254 . . . 4 ((𝑅𝑉𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
1093adant2 1129 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
11 inopn 21956 . . 3 (((ordTop‘𝑅) ∈ Top ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
126, 8, 10, 11syl3anc 1369 . 2 ((𝑅𝑉𝐴𝑋𝐵𝑋) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
131, 12eqeltrrid 2844 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  cin 3882   class class class wbr 5070  dom cdm 5580  cfv 6418  ordTopcordt 17127  Topctop 21950  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-ordt 17129  df-top 21951  df-topon 21968  df-bases 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator