MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn3 Structured version   Visualization version   GIF version

Theorem ordtopn3 23116
Description: An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn3
StepHypRef Expression
1 inrab 4275 . 2 ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) = {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)}
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 23113 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
433ad2ant1 1133 . . . 4 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 topontop 22833 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
64, 5syl 17 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (ordTop‘𝑅) ∈ Top)
72ordtopn1 23114 . . . 4 ((𝑅𝑉𝐴𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
873adant3 1132 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅))
92ordtopn2 23115 . . . 4 ((𝑅𝑉𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
1093adant2 1131 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅))
11 inopn 22819 . . 3 (((ordTop‘𝑅) ∈ Top ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∈ (ordTop‘𝑅) ∧ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
126, 8, 10, 11syl3anc 1373 . 2 ((𝑅𝑉𝐴𝑋𝐵𝑋) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝐴} ∩ {𝑥𝑋 ∣ ¬ 𝐵𝑅𝑥}) ∈ (ordTop‘𝑅))
131, 12eqeltrrid 2833 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  cin 3910   class class class wbr 5102  dom cdm 5631  cfv 6499  ordTopcordt 17438  Topctop 22813  TopOnctopon 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-2o 8412  df-en 8896  df-fin 8899  df-fi 9338  df-topgen 17382  df-ordt 17440  df-top 22814  df-topon 22831  df-bases 22866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator