Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapi | Structured version Visualization version GIF version |
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
Ref | Expression |
---|---|
elmapi | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8645 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
2 | elmapg 8637 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵 ↑m 𝐶) ↔ 𝐴:𝐶⟶𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐴 ∈ (𝐵 ↑m 𝐶) ↔ 𝐴:𝐶⟶𝐵)) |
4 | 3 | ibi 266 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) |
Copyright terms: Public domain | W3C validator |