| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phlipf | Structured version Visualization version GIF version | ||
| Description: The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| ipffn.1 | ⊢ 𝑉 = (Base‘𝑊) |
| ipffn.2 | ⊢ , = (·if‘𝑊) |
| phlipf.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| phlipf.k | ⊢ 𝐾 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| phlipf | ⊢ (𝑊 ∈ PreHil → , :(𝑉 × 𝑉)⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlipf.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | ipffn.1 | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | phlipf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 5 | 1, 2, 3, 4 | ipcl 21518 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(·𝑖‘𝑊)𝑦) ∈ 𝐾) |
| 6 | 5 | 3expb 1120 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥(·𝑖‘𝑊)𝑦) ∈ 𝐾) |
| 7 | 6 | ralrimivva 3178 | . 2 ⊢ (𝑊 ∈ PreHil → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥(·𝑖‘𝑊)𝑦) ∈ 𝐾) |
| 8 | ipffn.2 | . . . 4 ⊢ , = (·if‘𝑊) | |
| 9 | 3, 2, 8 | ipffval 21533 | . . 3 ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥(·𝑖‘𝑊)𝑦)) |
| 10 | 9 | fmpo 8026 | . 2 ⊢ (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥(·𝑖‘𝑊)𝑦) ∈ 𝐾 ↔ , :(𝑉 × 𝑉)⟶𝐾) |
| 11 | 7, 10 | sylib 218 | 1 ⊢ (𝑊 ∈ PreHil → , :(𝑉 × 𝑉)⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Scalarcsca 17199 ·𝑖cip 17201 PreHilcphl 21509 ·ifcipf 21510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-sca 17212 df-vsca 17213 df-ip 17214 df-ghm 19121 df-lmhm 20905 df-sra 21056 df-rgmod 21057 df-phl 21511 df-ipf 21512 |
| This theorem is referenced by: ipcn 25122 |
| Copyright terms: Public domain | W3C validator |