MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipfeq Structured version   Visualization version   GIF version

Theorem ipfeq 20767
Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipfeq ( , Fn (𝑉 × 𝑉) → · = , )

Proof of Theorem ipfeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffval.1 . . 3 𝑉 = (Base‘𝑊)
2 ipffval.2 . . 3 , = (·𝑖𝑊)
3 ipffval.3 . . 3 · = (·if𝑊)
41, 2, 3ipffval 20765 . 2 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
5 fnov 7383 . . 3 ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
65biimpi 215 . 2 ( , Fn (𝑉 × 𝑉) → , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
74, 6eqtr4id 2798 1 ( , Fn (𝑉 × 𝑉) → · = , )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   × cxp 5578   Fn wfn 6413  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  ·𝑖cip 16893  ·ifcipf 20742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-ipf 20744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator