| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipfeq | Structured version Visualization version GIF version | ||
| Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
| ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
| ipffval.3 | ⊢ · = (·if‘𝑊) |
| Ref | Expression |
|---|---|
| ipfeq | ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipffval.1 | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | ipffval.2 | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 3 | ipffval.3 | . . 3 ⊢ · = (·if‘𝑊) | |
| 4 | 1, 2, 3 | ipffval 21633 | . 2 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
| 5 | fnov 7547 | . . 3 ⊢ ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) | |
| 6 | 5 | biimpi 216 | . 2 ⊢ ( , Fn (𝑉 × 𝑉) → , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
| 7 | 4, 6 | eqtr4id 2788 | 1 ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 × cxp 5665 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 Basecbs 17230 ·𝑖cip 17282 ·ifcipf 21610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-ipf 21612 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |