MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipfeq Structured version   Visualization version   GIF version

Theorem ipfeq 21559
Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipfeq ( , Fn (𝑉 × 𝑉) → · = , )

Proof of Theorem ipfeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffval.1 . . 3 𝑉 = (Base‘𝑊)
2 ipffval.2 . . 3 , = (·𝑖𝑊)
3 ipffval.3 . . 3 · = (·if𝑊)
41, 2, 3ipffval 21557 . 2 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
5 fnov 7520 . . 3 ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
65biimpi 216 . 2 ( , Fn (𝑉 × 𝑉) → , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
74, 6eqtr4id 2783 1 ( , Fn (𝑉 × 𝑉) → · = , )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   × cxp 5636   Fn wfn 6506  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  ·𝑖cip 17225  ·ifcipf 21534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-ipf 21536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator