![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipfeq | Structured version Visualization version GIF version |
Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
ipffval.3 | ⊢ · = (·if‘𝑊) |
Ref | Expression |
---|---|
ipfeq | ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnov 7000 | . . 3 ⊢ ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) | |
2 | 1 | biimpi 208 | . 2 ⊢ ( , Fn (𝑉 × 𝑉) → , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
3 | ipffval.1 | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | ipffval.2 | . . 3 ⊢ , = (·𝑖‘𝑊) | |
5 | ipffval.3 | . . 3 ⊢ · = (·if‘𝑊) | |
6 | 3, 4, 5 | ipffval 20314 | . 2 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
7 | 2, 6 | syl6reqr 2850 | 1 ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 × cxp 5308 Fn wfn 6094 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 Basecbs 16181 ·𝑖cip 16269 ·ifcipf 20291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-ipf 20293 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |