![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipfeq | Structured version Visualization version GIF version |
Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
ipffval.1 | โข ๐ = (Baseโ๐) |
ipffval.2 | โข , = (ยท๐โ๐) |
ipffval.3 | โข ยท = (ยทifโ๐) |
Ref | Expression |
---|---|
ipfeq | โข ( , Fn (๐ ร ๐) โ ยท = , ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.1 | . . 3 โข ๐ = (Baseโ๐) | |
2 | ipffval.2 | . . 3 โข , = (ยท๐โ๐) | |
3 | ipffval.3 | . . 3 โข ยท = (ยทifโ๐) | |
4 | 1, 2, 3 | ipffval 21200 | . 2 โข ยท = (๐ฅ โ ๐, ๐ฆ โ ๐ โฆ (๐ฅ , ๐ฆ)) |
5 | fnov 7539 | . . 3 โข ( , Fn (๐ ร ๐) โ , = (๐ฅ โ ๐, ๐ฆ โ ๐ โฆ (๐ฅ , ๐ฆ))) | |
6 | 5 | biimpi 215 | . 2 โข ( , Fn (๐ ร ๐) โ , = (๐ฅ โ ๐, ๐ฆ โ ๐ โฆ (๐ฅ , ๐ฆ))) |
7 | 4, 6 | eqtr4id 2791 | 1 โข ( , Fn (๐ ร ๐) โ ยท = , ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 ร cxp 5674 Fn wfn 6538 โcfv 6543 (class class class)co 7408 โ cmpo 7410 Basecbs 17143 ยท๐cip 17201 ยทifcipf 21177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-ipf 21179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |