| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipfeq | Structured version Visualization version GIF version | ||
| Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
| ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
| ipffval.3 | ⊢ · = (·if‘𝑊) |
| Ref | Expression |
|---|---|
| ipfeq | ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipffval.1 | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | ipffval.2 | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 3 | ipffval.3 | . . 3 ⊢ · = (·if‘𝑊) | |
| 4 | 1, 2, 3 | ipffval 21564 | . 2 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
| 5 | fnov 7523 | . . 3 ⊢ ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) | |
| 6 | 5 | biimpi 216 | . 2 ⊢ ( , Fn (𝑉 × 𝑉) → , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
| 7 | 4, 6 | eqtr4id 2784 | 1 ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 ·𝑖cip 17232 ·ifcipf 21541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-ipf 21543 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |