MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipfeq Structured version   Visualization version   GIF version

Theorem ipfeq 20339
Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipfeq ( , Fn (𝑉 × 𝑉) → · = , )

Proof of Theorem ipfeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffval.1 . . 3 𝑉 = (Base‘𝑊)
2 ipffval.2 . . 3 , = (·𝑖𝑊)
3 ipffval.3 . . 3 · = (·if𝑊)
41, 2, 3ipffval 20337 . 2 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
5 fnov 7261 . . 3 ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
65biimpi 219 . 2 ( , Fn (𝑉 × 𝑉) → , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
74, 6eqtr4id 2852 1 ( , Fn (𝑉 × 𝑉) → · = , )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538   × cxp 5517   Fn wfn 6319  cfv 6324  (class class class)co 7135  cmpo 7137  Basecbs 16475  ·𝑖cip 16562  ·ifcipf 20314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-ipf 20316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator