MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipfeq Structured version   Visualization version   GIF version

Theorem ipfeq 21566
Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipfeq ( , Fn (𝑉 × 𝑉) → · = , )

Proof of Theorem ipfeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffval.1 . . 3 𝑉 = (Base‘𝑊)
2 ipffval.2 . . 3 , = (·𝑖𝑊)
3 ipffval.3 . . 3 · = (·if𝑊)
41, 2, 3ipffval 21564 . 2 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
5 fnov 7523 . . 3 ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
65biimpi 216 . 2 ( , Fn (𝑉 × 𝑉) → , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
74, 6eqtr4id 2784 1 ( , Fn (𝑉 × 𝑉) → · = , )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   × cxp 5639   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  ·𝑖cip 17232  ·ifcipf 21541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-ipf 21543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator