Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipfeq | Structured version Visualization version GIF version |
Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
ipffval.3 | ⊢ · = (·if‘𝑊) |
Ref | Expression |
---|---|
ipfeq | ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.1 | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ipffval.2 | . . 3 ⊢ , = (·𝑖‘𝑊) | |
3 | ipffval.3 | . . 3 ⊢ · = (·if‘𝑊) | |
4 | 1, 2, 3 | ipffval 20853 | . 2 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
5 | fnov 7405 | . . 3 ⊢ ( , Fn (𝑉 × 𝑉) ↔ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) | |
6 | 5 | biimpi 215 | . 2 ⊢ ( , Fn (𝑉 × 𝑉) → , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
7 | 4, 6 | eqtr4id 2797 | 1 ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5587 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 ·𝑖cip 16967 ·ifcipf 20830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-ipf 20832 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |