MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcmpcmet Structured version   Visualization version   GIF version

Theorem relcmpcmet 25234
Description: If 𝐷 is a metric space such that all the balls of some fixed size are relatively compact, then 𝐷 is complete. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
relcmpcmet.1 𝐽 = (MetOpen‘𝐷)
relcmpcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
relcmpcmet.3 (𝜑𝑅 ∈ ℝ+)
relcmpcmet.4 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
Assertion
Ref Expression
relcmpcmet (𝜑𝐷 ∈ (CMet‘𝑋))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋

Proof of Theorem relcmpcmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relcmpcmet.2 . 2 (𝜑𝐷 ∈ (Met‘𝑋))
2 metxmet 24238 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
43adantr 480 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
5 simpr 484 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (CauFil‘𝐷))
6 relcmpcmet.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
76adantr 480 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑅 ∈ ℝ+)
8 cfil3i 25185 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
94, 5, 7, 8syl3anc 1373 . . . 4 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
103ad2antrr 726 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐷 ∈ (∞Met‘𝑋))
11 relcmpcmet.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1211mopntopon 24343 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1310, 12syl 17 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
14 cfilfil 25183 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
153, 14sylan 580 . . . . . . . 8 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
1615adantr 480 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
17 simprr 772 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
18 topontop 22816 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ Top)
20 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑥𝑋)
216rpxrd 12956 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ*)
2221ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑅 ∈ ℝ*)
23 blssm 24322 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
2410, 20, 22, 23syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
25 toponuni 22817 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2613, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑋 = 𝐽)
2724, 26sseqtrd 3974 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽)
28 eqid 2729 . . . . . . . . . . 11 𝐽 = 𝐽
2928clsss3 22962 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3019, 27, 29syl2anc 584 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3130, 26sseqtrrd 3975 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋)
3228sscls 22959 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
3319, 27, 32syl2anc 584 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
34 filss 23756 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑅) ∈ 𝑓 ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
3516, 17, 31, 33, 34syl13anc 1374 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
36 fclsrest 23927 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
3713, 16, 35, 36syl3anc 1373 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
38 inss1 4190 . . . . . . 7 ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fClus 𝑓)
39 eqid 2729 . . . . . . . . 9 dom dom 𝐷 = dom dom 𝐷
4011, 39cfilfcls 25190 . . . . . . . 8 (𝑓 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4140ad2antlr 727 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4238, 41sseqtrid 3980 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fLim 𝑓))
4337, 42eqsstrd 3972 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓))
44 relcmpcmet.4 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
4544ad2ant2r 747 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
46 filfbas 23751 . . . . . . . . . 10 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
4716, 46syl 17 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (fBas‘𝑋))
48 fbncp 23742 . . . . . . . . 9 ((𝑓 ∈ (fBas‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
4947, 35, 48syl2anc 584 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
50 trfil3 23791 . . . . . . . . 9 ((𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5116, 31, 50syl2anc 584 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5249, 51mpbird 257 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
53 resttopon 23064 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5413, 31, 53syl2anc 584 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
55 toponuni 22817 . . . . . . . . 9 ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5756fveq2d 6830 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
5852, 57eleqtrd 2830 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
59 eqid 2729 . . . . . . 7 (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
6059fclscmpi 23932 . . . . . 6 (((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp ∧ (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
6145, 58, 60syl2anc 584 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
62 ssn0 4357 . . . . 5 ((((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓) ∧ ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) → (𝐽 fLim 𝑓) ≠ ∅)
6343, 61, 62syl2anc 584 . . . 4 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fLim 𝑓) ≠ ∅)
649, 63rexlimddv 3136 . . 3 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑓) ≠ ∅)
6564ralrimiva 3121 . 2 (𝜑 → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)
6611iscmet 25200 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
671, 65, 66sylanbrc 583 1 (𝜑𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  cin 3904  wss 3905  c0 4286   cuni 4861  dom cdm 5623  cfv 6486  (class class class)co 7353  *cxr 11167  +crp 12911  t crest 17342  ∞Metcxmet 21264  Metcmet 21265  ballcbl 21266  fBascfbas 21267  MetOpencmopn 21269  Topctop 22796  TopOnctopon 22813  clsccl 22921  Compccmp 23289  Filcfil 23748   fLim cflim 23837   fClus cfcls 23839  CauFilccfil 25168  CMetccmet 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cmp 23290  df-fil 23749  df-flim 23842  df-fcls 23844  df-cfil 25171  df-cmet 25173
This theorem is referenced by:  cmpcmet  25235  cncmet  25238
  Copyright terms: Public domain W3C validator