Step | Hyp | Ref
| Expression |
1 | | relcmpcmet.2 |
. 2
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
2 | | metxmet 23088 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
4 | 3 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (CauFil‘𝐷)) |
6 | | relcmpcmet.3 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
7 | 6 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑅 ∈
ℝ+) |
8 | | cfil3i 24022 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) →
∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓) |
9 | 4, 5, 7, 8 | syl3anc 1372 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓) |
10 | 3 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐷 ∈ (∞Met‘𝑋)) |
11 | | relcmpcmet.1 |
. . . . . . . . 9
⊢ 𝐽 = (MetOpen‘𝐷) |
12 | 11 | mopntopon 23193 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
13 | 10, 12 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | | cfilfil 24020 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋)) |
15 | 3, 14 | sylan 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋)) |
16 | 15 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (Fil‘𝑋)) |
17 | | simprr 773 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ∈ 𝑓) |
18 | | topontop 21665 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
19 | 13, 18 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ Top) |
20 | | simprl 771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑥 ∈ 𝑋) |
21 | 6 | rpxrd 12516 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
22 | 21 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑅 ∈
ℝ*) |
23 | | blssm 23172 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋) |
24 | 10, 20, 22, 23 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋) |
25 | | toponuni 21666 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
26 | 13, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑋 = ∪ 𝐽) |
27 | 24, 26 | sseqtrd 3918 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ∪ 𝐽) |
28 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
29 | 28 | clsss3 21811 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ ∪
𝐽) |
30 | 19, 27, 29 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ ∪
𝐽) |
31 | 30, 26 | sseqtrrd 3919 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) |
32 | 28 | sscls 21808 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ∪ 𝐽) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) |
33 | 19, 27, 32 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) |
34 | | filss 22605 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑅) ∈ 𝑓 ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) |
35 | 16, 17, 31, 33, 34 | syl13anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) |
36 | | fclsrest 22776 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
37 | 13, 16, 35, 36 | syl3anc 1372 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
38 | | inss1 4120 |
. . . . . . 7
⊢ ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fClus 𝑓) |
39 | | eqid 2738 |
. . . . . . . . 9
⊢ dom dom
𝐷 = dom dom 𝐷 |
40 | 11, 39 | cfilfcls 24027 |
. . . . . . . 8
⊢ (𝑓 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓)) |
41 | 40 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓)) |
42 | 38, 41 | sseqtrid 3930 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fLim 𝑓)) |
43 | 37, 42 | eqsstrd 3916 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓)) |
44 | | relcmpcmet.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp) |
45 | 44 | ad2ant2r 747 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp) |
46 | | filfbas 22600 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋)) |
47 | 16, 46 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (fBas‘𝑋)) |
48 | | fbncp 22591 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (fBas‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓) |
49 | 47, 35, 48 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓) |
50 | | trfil3 22640 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → ((𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)) |
51 | 16, 31, 50 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)) |
52 | 49, 51 | mpbird 260 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
53 | | resttopon 21913 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
54 | 13, 31, 53 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
55 | | toponuni 21666 |
. . . . . . . . 9
⊢ ((𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = ∪ (𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
56 | 54, 55 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = ∪ (𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
57 | 56 | fveq2d 6679 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (Fil‘∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) |
58 | 52, 57 | eleqtrd 2835 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) |
59 | | eqid 2738 |
. . . . . . 7
⊢ ∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = ∪ (𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) |
60 | 59 | fclscmpi 22781 |
. . . . . 6
⊢ (((𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp ∧ (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) |
61 | 45, 58, 60 | syl2anc 587 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) |
62 | | ssn0 4290 |
. . . . 5
⊢ ((((𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓) ∧ ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) → (𝐽 fLim 𝑓) ≠ ∅) |
63 | 43, 61, 62 | syl2anc 587 |
. . . 4
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fLim 𝑓) ≠ ∅) |
64 | 9, 63 | rexlimddv 3201 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑓) ≠ ∅) |
65 | 64 | ralrimiva 3096 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) |
66 | 11 | iscmet 24037 |
. 2
⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
67 | 1, 65, 66 | sylanbrc 586 |
1
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |