MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcmpcmet Structured version   Visualization version   GIF version

Theorem relcmpcmet 25337
Description: If 𝐷 is a metric space such that all the balls of some fixed size are relatively compact, then 𝐷 is complete. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
relcmpcmet.1 𝐽 = (MetOpen‘𝐷)
relcmpcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
relcmpcmet.3 (𝜑𝑅 ∈ ℝ+)
relcmpcmet.4 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
Assertion
Ref Expression
relcmpcmet (𝜑𝐷 ∈ (CMet‘𝑋))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋

Proof of Theorem relcmpcmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relcmpcmet.2 . 2 (𝜑𝐷 ∈ (Met‘𝑋))
2 metxmet 24331 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
43adantr 479 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
5 simpr 483 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (CauFil‘𝐷))
6 relcmpcmet.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
76adantr 479 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑅 ∈ ℝ+)
8 cfil3i 25288 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
94, 5, 7, 8syl3anc 1368 . . . 4 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
103ad2antrr 724 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐷 ∈ (∞Met‘𝑋))
11 relcmpcmet.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1211mopntopon 24436 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1310, 12syl 17 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
14 cfilfil 25286 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
153, 14sylan 578 . . . . . . . 8 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
1615adantr 479 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
17 simprr 771 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
18 topontop 22906 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ Top)
20 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑥𝑋)
216rpxrd 13071 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ*)
2221ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑅 ∈ ℝ*)
23 blssm 24415 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
2410, 20, 22, 23syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
25 toponuni 22907 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2613, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑋 = 𝐽)
2724, 26sseqtrd 4020 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽)
28 eqid 2726 . . . . . . . . . . 11 𝐽 = 𝐽
2928clsss3 23054 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3019, 27, 29syl2anc 582 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3130, 26sseqtrrd 4021 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋)
3228sscls 23051 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
3319, 27, 32syl2anc 582 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
34 filss 23848 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑅) ∈ 𝑓 ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
3516, 17, 31, 33, 34syl13anc 1369 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
36 fclsrest 24019 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
3713, 16, 35, 36syl3anc 1368 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
38 inss1 4230 . . . . . . 7 ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fClus 𝑓)
39 eqid 2726 . . . . . . . . 9 dom dom 𝐷 = dom dom 𝐷
4011, 39cfilfcls 25293 . . . . . . . 8 (𝑓 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4140ad2antlr 725 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4238, 41sseqtrid 4032 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fLim 𝑓))
4337, 42eqsstrd 4018 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓))
44 relcmpcmet.4 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
4544ad2ant2r 745 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
46 filfbas 23843 . . . . . . . . . 10 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
4716, 46syl 17 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (fBas‘𝑋))
48 fbncp 23834 . . . . . . . . 9 ((𝑓 ∈ (fBas‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
4947, 35, 48syl2anc 582 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
50 trfil3 23883 . . . . . . . . 9 ((𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5116, 31, 50syl2anc 582 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5249, 51mpbird 256 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
53 resttopon 23156 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5413, 31, 53syl2anc 582 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
55 toponuni 22907 . . . . . . . . 9 ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5756fveq2d 6905 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
5852, 57eleqtrd 2828 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
59 eqid 2726 . . . . . . 7 (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
6059fclscmpi 24024 . . . . . 6 (((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp ∧ (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
6145, 58, 60syl2anc 582 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
62 ssn0 4405 . . . . 5 ((((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓) ∧ ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) → (𝐽 fLim 𝑓) ≠ ∅)
6343, 61, 62syl2anc 582 . . . 4 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fLim 𝑓) ≠ ∅)
649, 63rexlimddv 3151 . . 3 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑓) ≠ ∅)
6564ralrimiva 3136 . 2 (𝜑 → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)
6611iscmet 25303 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
671, 65, 66sylanbrc 581 1 (𝜑𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  cdif 3944  cin 3946  wss 3947  c0 4325   cuni 4913  dom cdm 5682  cfv 6554  (class class class)co 7424  *cxr 11297  +crp 13028  t crest 17435  ∞Metcxmet 21328  Metcmet 21329  ballcbl 21330  fBascfbas 21331  MetOpencmopn 21333  Topctop 22886  TopOnctopon 22903  clsccl 23013  Compccmp 23381  Filcfil 23840   fLim cflim 23929   fClus cfcls 23931  CauFilccfil 25271  CMetccmet 25273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fi 9454  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ico 13384  df-rest 17437  df-topgen 17458  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-top 22887  df-topon 22904  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-cmp 23382  df-fil 23841  df-flim 23934  df-fcls 23936  df-cfil 25274  df-cmet 25276
This theorem is referenced by:  cmpcmet  25338  cncmet  25341
  Copyright terms: Public domain W3C validator