| Step | Hyp | Ref
| Expression |
| 1 | | relcmpcmet.2 |
. 2
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 2 | | metxmet 24344 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (CauFil‘𝐷)) |
| 6 | | relcmpcmet.3 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑅 ∈
ℝ+) |
| 8 | | cfil3i 25303 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) →
∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓) |
| 9 | 4, 5, 7, 8 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓) |
| 10 | 3 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 11 | | relcmpcmet.1 |
. . . . . . . . 9
⊢ 𝐽 = (MetOpen‘𝐷) |
| 12 | 11 | mopntopon 24449 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 13 | 10, 12 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | | cfilfil 25301 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋)) |
| 15 | 3, 14 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋)) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (Fil‘𝑋)) |
| 17 | | simprr 773 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ∈ 𝑓) |
| 18 | | topontop 22919 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 19 | 13, 18 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ Top) |
| 20 | | simprl 771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑥 ∈ 𝑋) |
| 21 | 6 | rpxrd 13078 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
| 22 | 21 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑅 ∈
ℝ*) |
| 23 | | blssm 24428 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋) |
| 24 | 10, 20, 22, 23 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋) |
| 25 | | toponuni 22920 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 26 | 13, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑋 = ∪ 𝐽) |
| 27 | 24, 26 | sseqtrd 4020 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ∪ 𝐽) |
| 28 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 29 | 28 | clsss3 23067 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ ∪
𝐽) |
| 30 | 19, 27, 29 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ ∪
𝐽) |
| 31 | 30, 26 | sseqtrrd 4021 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) |
| 32 | 28 | sscls 23064 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ∪ 𝐽) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) |
| 33 | 19, 27, 32 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) |
| 34 | | filss 23861 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑅) ∈ 𝑓 ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) |
| 35 | 16, 17, 31, 33, 34 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) |
| 36 | | fclsrest 24032 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
| 37 | 13, 16, 35, 36 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
| 38 | | inss1 4237 |
. . . . . . 7
⊢ ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fClus 𝑓) |
| 39 | | eqid 2737 |
. . . . . . . . 9
⊢ dom dom
𝐷 = dom dom 𝐷 |
| 40 | 11, 39 | cfilfcls 25308 |
. . . . . . . 8
⊢ (𝑓 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓)) |
| 41 | 40 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓)) |
| 42 | 38, 41 | sseqtrid 4026 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fLim 𝑓)) |
| 43 | 37, 42 | eqsstrd 4018 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓)) |
| 44 | | relcmpcmet.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp) |
| 45 | 44 | ad2ant2r 747 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp) |
| 46 | | filfbas 23856 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋)) |
| 47 | 16, 46 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (fBas‘𝑋)) |
| 48 | | fbncp 23847 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (fBas‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓) |
| 49 | 47, 35, 48 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓) |
| 50 | | trfil3 23896 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → ((𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)) |
| 51 | 16, 31, 50 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)) |
| 52 | 49, 51 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
| 53 | | resttopon 23169 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
| 54 | 13, 31, 53 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
| 55 | | toponuni 22920 |
. . . . . . . . 9
⊢ ((𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = ∪ (𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
| 56 | 54, 55 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = ∪ (𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) |
| 57 | 56 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (Fil‘∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) |
| 58 | 52, 57 | eleqtrd 2843 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) |
| 59 | | eqid 2737 |
. . . . . . 7
⊢ ∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = ∪ (𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) |
| 60 | 59 | fclscmpi 24037 |
. . . . . 6
⊢ (((𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp ∧ (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘∪ (𝐽
↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) |
| 61 | 45, 58, 60 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) |
| 62 | | ssn0 4404 |
. . . . 5
⊢ ((((𝐽 ↾t
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓) ∧ ((𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) → (𝐽 fLim 𝑓) ≠ ∅) |
| 63 | 43, 61, 62 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fLim 𝑓) ≠ ∅) |
| 64 | 9, 63 | rexlimddv 3161 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑓) ≠ ∅) |
| 65 | 64 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) |
| 66 | 11 | iscmet 25318 |
. 2
⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| 67 | 1, 65, 66 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |