MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcmpcmet Structured version   Visualization version   GIF version

Theorem relcmpcmet 23332
Description: If 𝐷 is a metric space such that all the balls of some fixed size are relatively compact, then 𝐷 is complete. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
relcmpcmet.1 𝐽 = (MetOpen‘𝐷)
relcmpcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
relcmpcmet.3 (𝜑𝑅 ∈ ℝ+)
relcmpcmet.4 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
Assertion
Ref Expression
relcmpcmet (𝜑𝐷 ∈ (CMet‘𝑋))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋

Proof of Theorem relcmpcmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relcmpcmet.2 . 2 (𝜑𝐷 ∈ (Met‘𝑋))
2 metxmet 22356 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
43adantr 468 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
5 simpr 473 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (CauFil‘𝐷))
6 relcmpcmet.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
76adantr 468 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑅 ∈ ℝ+)
8 cfil3i 23284 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
94, 5, 7, 8syl3anc 1483 . . . 4 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
103ad2antrr 708 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐷 ∈ (∞Met‘𝑋))
11 relcmpcmet.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1211mopntopon 22461 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1310, 12syl 17 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
14 cfilfil 23282 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
153, 14sylan 571 . . . . . . . 8 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
1615adantr 468 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
17 simprr 780 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
18 topontop 20935 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ Top)
20 simprl 778 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑥𝑋)
216rpxrd 12090 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ*)
2221ad2antrr 708 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑅 ∈ ℝ*)
23 blssm 22440 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
2410, 20, 22, 23syl3anc 1483 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
25 toponuni 20936 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2613, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑋 = 𝐽)
2724, 26sseqtrd 3845 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽)
28 eqid 2813 . . . . . . . . . . 11 𝐽 = 𝐽
2928clsss3 21081 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3019, 27, 29syl2anc 575 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3130, 26sseqtr4d 3846 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋)
3228sscls 21078 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
3319, 27, 32syl2anc 575 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
34 filss 21874 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑅) ∈ 𝑓 ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
3516, 17, 31, 33, 34syl13anc 1484 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
36 fclsrest 22045 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
3713, 16, 35, 36syl3anc 1483 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
38 inss1 4036 . . . . . . 7 ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fClus 𝑓)
39 eqid 2813 . . . . . . . . 9 dom dom 𝐷 = dom dom 𝐷
4011, 39cfilfcls 23289 . . . . . . . 8 (𝑓 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4140ad2antlr 709 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4238, 41syl5sseq 3857 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fLim 𝑓))
4337, 42eqsstrd 3843 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓))
44 relcmpcmet.4 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
4544ad2ant2r 744 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
46 filfbas 21869 . . . . . . . . . 10 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
4716, 46syl 17 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (fBas‘𝑋))
48 fbncp 21860 . . . . . . . . 9 ((𝑓 ∈ (fBas‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
4947, 35, 48syl2anc 575 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
50 trfil3 21909 . . . . . . . . 9 ((𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5116, 31, 50syl2anc 575 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5249, 51mpbird 248 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
53 resttopon 21183 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5413, 31, 53syl2anc 575 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
55 toponuni 20936 . . . . . . . . 9 ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5756fveq2d 6415 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
5852, 57eleqtrd 2894 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
59 eqid 2813 . . . . . . 7 (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
6059fclscmpi 22050 . . . . . 6 (((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp ∧ (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
6145, 58, 60syl2anc 575 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
62 ssn0 4181 . . . . 5 ((((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓) ∧ ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) → (𝐽 fLim 𝑓) ≠ ∅)
6343, 61, 62syl2anc 575 . . . 4 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fLim 𝑓) ≠ ∅)
649, 63rexlimddv 3230 . . 3 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑓) ≠ ∅)
6564ralrimiva 3161 . 2 (𝜑 → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)
6611iscmet 23299 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
671, 65, 66sylanbrc 574 1 (𝜑𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wne 2985  wral 3103  wrex 3104  cdif 3773  cin 3775  wss 3776  c0 4123   cuni 4637  dom cdm 5318  cfv 6104  (class class class)co 6877  *cxr 10361  +crp 12049  t crest 16289  ∞Metcxmt 19942  Metcme 19943  ballcbl 19944  fBascfbas 19945  MetOpencmopn 19947  Topctop 20915  TopOnctopon 20932  clsccl 21040  Compccmp 21407  Filcfil 21866   fLim cflim 21955   fClus cfcls 21957  CauFilccfil 23267  CMetcms 23269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fi 8559  df-sup 8590  df-inf 8591  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-n0 11563  df-z 11647  df-uz 11908  df-q 12011  df-rp 12050  df-xneg 12165  df-xadd 12166  df-xmul 12167  df-ico 12402  df-rest 16291  df-topgen 16312  df-psmet 19949  df-xmet 19950  df-met 19951  df-bl 19952  df-mopn 19953  df-fbas 19954  df-fg 19955  df-top 20916  df-topon 20933  df-bases 20968  df-cld 21041  df-ntr 21042  df-cls 21043  df-nei 21120  df-cmp 21408  df-fil 21867  df-flim 21960  df-fcls 21962  df-cfil 23270  df-cmet 23272
This theorem is referenced by:  cmpcmet  23333  cncmet  23336
  Copyright terms: Public domain W3C validator