| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equivcmet | Structured version Visualization version GIF version | ||
| Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 25176, metss2 24376, this theorem does not have a one-directional form - it is possible for a metric 𝐶 that is strongly finer than the complete metric 𝐷 to be incomplete and vice versa. Consider 𝐷 = the metric on ℝ induced by the usual homeomorphism from (0, 1) against the usual metric 𝐶 on ℝ and against the discrete metric 𝐸 on ℝ. Then both 𝐶 and 𝐸 are complete but 𝐷 is not, and 𝐶 is strongly finer than 𝐷, which is strongly finer than 𝐸. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| Ref | Expression |
|---|---|
| equivcmet.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
| equivcmet.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| equivcmet.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| equivcmet.4 | ⊢ (𝜑 → 𝑆 ∈ ℝ+) |
| equivcmet.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
| equivcmet.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) |
| Ref | Expression |
|---|---|
| equivcmet | ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcmet.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
| 2 | equivcmet.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | 1, 2 | 2thd 265 | . . 3 ⊢ (𝜑 → (𝐶 ∈ (Met‘𝑋) ↔ 𝐷 ∈ (Met‘𝑋))) |
| 4 | equivcmet.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℝ+) | |
| 5 | equivcmet.6 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) | |
| 6 | 2, 1, 4, 5 | equivcfil 25175 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐶) ⊆ (CauFil‘𝐷)) |
| 7 | equivcmet.3 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 8 | equivcmet.5 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
| 9 | 1, 2, 7, 8 | equivcfil 25175 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶)) |
| 10 | 6, 9 | eqssd 3961 | . . . 4 ⊢ (𝜑 → (CauFil‘𝐶) = (CauFil‘𝐷)) |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (MetOpen‘𝐶) = (MetOpen‘𝐶) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 13 | 11, 12, 1, 2, 7, 8 | metss2 24376 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐶) ⊆ (MetOpen‘𝐷)) |
| 14 | 12, 11, 2, 1, 4, 5 | metss2 24376 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ (MetOpen‘𝐶)) |
| 15 | 13, 14 | eqssd 3961 | . . . . . 6 ⊢ (𝜑 → (MetOpen‘𝐶) = (MetOpen‘𝐷)) |
| 16 | 15 | oveq1d 7384 | . . . . 5 ⊢ (𝜑 → ((MetOpen‘𝐶) fLim 𝑓) = ((MetOpen‘𝐷) fLim 𝑓)) |
| 17 | 16 | neeq1d 2984 | . . . 4 ⊢ (𝜑 → (((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 18 | 10, 17 | raleqbidv 3316 | . . 3 ⊢ (𝜑 → (∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 19 | 3, 18 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))) |
| 20 | 11 | iscmet 25160 | . 2 ⊢ (𝐶 ∈ (CMet‘𝑋) ↔ (𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅)) |
| 21 | 12 | iscmet 25160 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 22 | 19, 20, 21 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 · cmul 11049 ≤ cle 11185 ℝ+crp 12927 Metcmet 21226 MetOpencmopn 21230 fLim cflim 23797 CauFilccfil 25128 CMetccmet 25130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-bases 22809 df-fil 23709 df-cfil 25131 df-cmet 25133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |