Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equivcmet | Structured version Visualization version GIF version |
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 24462, metss2 23666, this theorem does not have a one-directional form - it is possible for a metric 𝐶 that is strongly finer than the complete metric 𝐷 to be incomplete and vice versa. Consider 𝐷 = the metric on ℝ induced by the usual homeomorphism from (0, 1) against the usual metric 𝐶 on ℝ and against the discrete metric 𝐸 on ℝ. Then both 𝐶 and 𝐸 are complete but 𝐷 is not, and 𝐶 is strongly finer than 𝐷, which is strongly finer than 𝐸. (Contributed by Mario Carneiro, 15-Sep-2015.) |
Ref | Expression |
---|---|
equivcmet.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
equivcmet.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
equivcmet.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
equivcmet.4 | ⊢ (𝜑 → 𝑆 ∈ ℝ+) |
equivcmet.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
equivcmet.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) |
Ref | Expression |
---|---|
equivcmet | ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivcmet.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
2 | equivcmet.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
3 | 1, 2 | 2thd 264 | . . 3 ⊢ (𝜑 → (𝐶 ∈ (Met‘𝑋) ↔ 𝐷 ∈ (Met‘𝑋))) |
4 | equivcmet.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℝ+) | |
5 | equivcmet.6 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) | |
6 | 2, 1, 4, 5 | equivcfil 24461 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐶) ⊆ (CauFil‘𝐷)) |
7 | equivcmet.3 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
8 | equivcmet.5 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
9 | 1, 2, 7, 8 | equivcfil 24461 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶)) |
10 | 6, 9 | eqssd 3943 | . . . 4 ⊢ (𝜑 → (CauFil‘𝐶) = (CauFil‘𝐷)) |
11 | eqid 2740 | . . . . . . . 8 ⊢ (MetOpen‘𝐶) = (MetOpen‘𝐶) | |
12 | eqid 2740 | . . . . . . . 8 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
13 | 11, 12, 1, 2, 7, 8 | metss2 23666 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐶) ⊆ (MetOpen‘𝐷)) |
14 | 12, 11, 2, 1, 4, 5 | metss2 23666 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ (MetOpen‘𝐶)) |
15 | 13, 14 | eqssd 3943 | . . . . . 6 ⊢ (𝜑 → (MetOpen‘𝐶) = (MetOpen‘𝐷)) |
16 | 15 | oveq1d 7286 | . . . . 5 ⊢ (𝜑 → ((MetOpen‘𝐶) fLim 𝑓) = ((MetOpen‘𝐷) fLim 𝑓)) |
17 | 16 | neeq1d 3005 | . . . 4 ⊢ (𝜑 → (((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
18 | 10, 17 | raleqbidv 3335 | . . 3 ⊢ (𝜑 → (∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
19 | 3, 18 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))) |
20 | 11 | iscmet 24446 | . 2 ⊢ (𝐶 ∈ (CMet‘𝑋) ↔ (𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅)) |
21 | 12 | iscmet 24446 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
22 | 19, 20, 21 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ∅c0 4262 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 · cmul 10877 ≤ cle 11011 ℝ+crp 12729 Metcmet 20581 MetOpencmopn 20585 fLim cflim 23083 CauFilccfil 24414 CMetccmet 24416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ico 13084 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-bases 22094 df-fil 22995 df-cfil 24417 df-cmet 24419 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |