![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equivcmet | Structured version Visualization version GIF version |
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 25246, metss2 24439, this theorem does not have a one-directional form - it is possible for a metric πΆ that is strongly finer than the complete metric π· to be incomplete and vice versa. Consider π· = the metric on β induced by the usual homeomorphism from (0, 1) against the usual metric πΆ on β and against the discrete metric πΈ on β. Then both πΆ and πΈ are complete but π· is not, and πΆ is strongly finer than π·, which is strongly finer than πΈ. (Contributed by Mario Carneiro, 15-Sep-2015.) |
Ref | Expression |
---|---|
equivcmet.1 | β’ (π β πΆ β (Metβπ)) |
equivcmet.2 | β’ (π β π· β (Metβπ)) |
equivcmet.3 | β’ (π β π β β+) |
equivcmet.4 | β’ (π β π β β+) |
equivcmet.5 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) |
equivcmet.6 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯π·π¦) β€ (π Β· (π₯πΆπ¦))) |
Ref | Expression |
---|---|
equivcmet | β’ (π β (πΆ β (CMetβπ) β π· β (CMetβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivcmet.1 | . . . 4 β’ (π β πΆ β (Metβπ)) | |
2 | equivcmet.2 | . . . 4 β’ (π β π· β (Metβπ)) | |
3 | 1, 2 | 2thd 264 | . . 3 β’ (π β (πΆ β (Metβπ) β π· β (Metβπ))) |
4 | equivcmet.4 | . . . . . 6 β’ (π β π β β+) | |
5 | equivcmet.6 | . . . . . 6 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯π·π¦) β€ (π Β· (π₯πΆπ¦))) | |
6 | 2, 1, 4, 5 | equivcfil 25245 | . . . . 5 β’ (π β (CauFilβπΆ) β (CauFilβπ·)) |
7 | equivcmet.3 | . . . . . 6 β’ (π β π β β+) | |
8 | equivcmet.5 | . . . . . 6 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) | |
9 | 1, 2, 7, 8 | equivcfil 25245 | . . . . 5 β’ (π β (CauFilβπ·) β (CauFilβπΆ)) |
10 | 6, 9 | eqssd 3990 | . . . 4 β’ (π β (CauFilβπΆ) = (CauFilβπ·)) |
11 | eqid 2725 | . . . . . . . 8 β’ (MetOpenβπΆ) = (MetOpenβπΆ) | |
12 | eqid 2725 | . . . . . . . 8 β’ (MetOpenβπ·) = (MetOpenβπ·) | |
13 | 11, 12, 1, 2, 7, 8 | metss2 24439 | . . . . . . 7 β’ (π β (MetOpenβπΆ) β (MetOpenβπ·)) |
14 | 12, 11, 2, 1, 4, 5 | metss2 24439 | . . . . . . 7 β’ (π β (MetOpenβπ·) β (MetOpenβπΆ)) |
15 | 13, 14 | eqssd 3990 | . . . . . 6 β’ (π β (MetOpenβπΆ) = (MetOpenβπ·)) |
16 | 15 | oveq1d 7431 | . . . . 5 β’ (π β ((MetOpenβπΆ) fLim π) = ((MetOpenβπ·) fLim π)) |
17 | 16 | neeq1d 2990 | . . . 4 β’ (π β (((MetOpenβπΆ) fLim π) β β β ((MetOpenβπ·) fLim π) β β )) |
18 | 10, 17 | raleqbidv 3330 | . . 3 β’ (π β (βπ β (CauFilβπΆ)((MetOpenβπΆ) fLim π) β β β βπ β (CauFilβπ·)((MetOpenβπ·) fLim π) β β )) |
19 | 3, 18 | anbi12d 630 | . 2 β’ (π β ((πΆ β (Metβπ) β§ βπ β (CauFilβπΆ)((MetOpenβπΆ) fLim π) β β ) β (π· β (Metβπ) β§ βπ β (CauFilβπ·)((MetOpenβπ·) fLim π) β β ))) |
20 | 11 | iscmet 25230 | . 2 β’ (πΆ β (CMetβπ) β (πΆ β (Metβπ) β§ βπ β (CauFilβπΆ)((MetOpenβπΆ) fLim π) β β )) |
21 | 12 | iscmet 25230 | . 2 β’ (π· β (CMetβπ) β (π· β (Metβπ) β§ βπ β (CauFilβπ·)((MetOpenβπ·) fLim π) β β )) |
22 | 19, 20, 21 | 3bitr4g 313 | 1 β’ (π β (πΆ β (CMetβπ) β π· β (CMetβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β wcel 2098 β wne 2930 βwral 3051 β c0 4318 class class class wbr 5143 βcfv 6543 (class class class)co 7416 Β· cmul 11143 β€ cle 11279 β+crp 13006 Metcmet 21269 MetOpencmopn 21273 fLim cflim 23856 CauFilccfil 25198 CMetccmet 25200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ico 13362 df-topgen 17424 df-psmet 21275 df-xmet 21276 df-met 21277 df-bl 21278 df-mopn 21279 df-fbas 21280 df-bases 22867 df-fil 23768 df-cfil 25201 df-cmet 25203 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |