MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcmet Structured version   Visualization version   GIF version

Theorem equivcmet 24479
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 24462, metss2 23666, this theorem does not have a one-directional form - it is possible for a metric 𝐶 that is strongly finer than the complete metric 𝐷 to be incomplete and vice versa. Consider 𝐷 = the metric on induced by the usual homeomorphism from (0, 1) against the usual metric 𝐶 on and against the discrete metric 𝐸 on . Then both 𝐶 and 𝐸 are complete but 𝐷 is not, and 𝐶 is strongly finer than 𝐷, which is strongly finer than 𝐸. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivcmet.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcmet.3 (𝜑𝑅 ∈ ℝ+)
equivcmet.4 (𝜑𝑆 ∈ ℝ+)
equivcmet.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
equivcmet.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦)))
Assertion
Ref Expression
equivcmet (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑆,𝑦

Proof of Theorem equivcmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 equivcmet.1 . . . 4 (𝜑𝐶 ∈ (Met‘𝑋))
2 equivcmet.2 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
31, 22thd 264 . . 3 (𝜑 → (𝐶 ∈ (Met‘𝑋) ↔ 𝐷 ∈ (Met‘𝑋)))
4 equivcmet.4 . . . . . 6 (𝜑𝑆 ∈ ℝ+)
5 equivcmet.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦)))
62, 1, 4, 5equivcfil 24461 . . . . 5 (𝜑 → (CauFil‘𝐶) ⊆ (CauFil‘𝐷))
7 equivcmet.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
8 equivcmet.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
91, 2, 7, 8equivcfil 24461 . . . . 5 (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
106, 9eqssd 3943 . . . 4 (𝜑 → (CauFil‘𝐶) = (CauFil‘𝐷))
11 eqid 2740 . . . . . . . 8 (MetOpen‘𝐶) = (MetOpen‘𝐶)
12 eqid 2740 . . . . . . . 8 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1311, 12, 1, 2, 7, 8metss2 23666 . . . . . . 7 (𝜑 → (MetOpen‘𝐶) ⊆ (MetOpen‘𝐷))
1412, 11, 2, 1, 4, 5metss2 23666 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) ⊆ (MetOpen‘𝐶))
1513, 14eqssd 3943 . . . . . 6 (𝜑 → (MetOpen‘𝐶) = (MetOpen‘𝐷))
1615oveq1d 7286 . . . . 5 (𝜑 → ((MetOpen‘𝐶) fLim 𝑓) = ((MetOpen‘𝐷) fLim 𝑓))
1716neeq1d 3005 . . . 4 (𝜑 → (((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
1810, 17raleqbidv 3335 . . 3 (𝜑 → (∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
193, 18anbi12d 631 . 2 (𝜑 → ((𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)))
2011iscmet 24446 . 2 (𝐶 ∈ (CMet‘𝑋) ↔ (𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅))
2112iscmet 24446 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
2219, 20, 213bitr4g 314 1 (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2110  wne 2945  wral 3066  c0 4262   class class class wbr 5079  cfv 6432  (class class class)co 7271   · cmul 10877  cle 11011  +crp 12729  Metcmet 20581  MetOpencmopn 20585   fLim cflim 23083  CauFilccfil 24414  CMetccmet 24416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ico 13084  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-bases 22094  df-fil 22995  df-cfil 24417  df-cmet 24419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator