| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equivcmet | Structured version Visualization version GIF version | ||
| Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 25289, metss2 24488, this theorem does not have a one-directional form - it is possible for a metric 𝐶 that is strongly finer than the complete metric 𝐷 to be incomplete and vice versa. Consider 𝐷 = the metric on ℝ induced by the usual homeomorphism from (0, 1) against the usual metric 𝐶 on ℝ and against the discrete metric 𝐸 on ℝ. Then both 𝐶 and 𝐸 are complete but 𝐷 is not, and 𝐶 is strongly finer than 𝐷, which is strongly finer than 𝐸. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| Ref | Expression |
|---|---|
| equivcmet.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
| equivcmet.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| equivcmet.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| equivcmet.4 | ⊢ (𝜑 → 𝑆 ∈ ℝ+) |
| equivcmet.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
| equivcmet.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) |
| Ref | Expression |
|---|---|
| equivcmet | ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcmet.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
| 2 | equivcmet.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | 1, 2 | 2thd 265 | . . 3 ⊢ (𝜑 → (𝐶 ∈ (Met‘𝑋) ↔ 𝐷 ∈ (Met‘𝑋))) |
| 4 | equivcmet.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℝ+) | |
| 5 | equivcmet.6 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) | |
| 6 | 2, 1, 4, 5 | equivcfil 25288 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐶) ⊆ (CauFil‘𝐷)) |
| 7 | equivcmet.3 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 8 | equivcmet.5 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
| 9 | 1, 2, 7, 8 | equivcfil 25288 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶)) |
| 10 | 6, 9 | eqssd 3983 | . . . 4 ⊢ (𝜑 → (CauFil‘𝐶) = (CauFil‘𝐷)) |
| 11 | eqid 2734 | . . . . . . . 8 ⊢ (MetOpen‘𝐶) = (MetOpen‘𝐶) | |
| 12 | eqid 2734 | . . . . . . . 8 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 13 | 11, 12, 1, 2, 7, 8 | metss2 24488 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐶) ⊆ (MetOpen‘𝐷)) |
| 14 | 12, 11, 2, 1, 4, 5 | metss2 24488 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ (MetOpen‘𝐶)) |
| 15 | 13, 14 | eqssd 3983 | . . . . . 6 ⊢ (𝜑 → (MetOpen‘𝐶) = (MetOpen‘𝐷)) |
| 16 | 15 | oveq1d 7429 | . . . . 5 ⊢ (𝜑 → ((MetOpen‘𝐶) fLim 𝑓) = ((MetOpen‘𝐷) fLim 𝑓)) |
| 17 | 16 | neeq1d 2990 | . . . 4 ⊢ (𝜑 → (((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 18 | 10, 17 | raleqbidv 3330 | . . 3 ⊢ (𝜑 → (∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 19 | 3, 18 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))) |
| 20 | 11 | iscmet 25273 | . 2 ⊢ (𝐶 ∈ (CMet‘𝑋) ↔ (𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅)) |
| 21 | 12 | iscmet 25273 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 22 | 19, 20, 21 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∅c0 4315 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 · cmul 11143 ≤ cle 11279 ℝ+crp 13017 Metcmet 21317 MetOpencmopn 21321 fLim cflim 23907 CauFilccfil 25241 CMetccmet 25243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ico 13376 df-topgen 17464 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-fbas 21328 df-bases 22919 df-fil 23819 df-cfil 25244 df-cmet 25246 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |