![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equivcmet | Structured version Visualization version GIF version |
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 25348, metss2 24541, this theorem does not have a one-directional form - it is possible for a metric 𝐶 that is strongly finer than the complete metric 𝐷 to be incomplete and vice versa. Consider 𝐷 = the metric on ℝ induced by the usual homeomorphism from (0, 1) against the usual metric 𝐶 on ℝ and against the discrete metric 𝐸 on ℝ. Then both 𝐶 and 𝐸 are complete but 𝐷 is not, and 𝐶 is strongly finer than 𝐷, which is strongly finer than 𝐸. (Contributed by Mario Carneiro, 15-Sep-2015.) |
Ref | Expression |
---|---|
equivcmet.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
equivcmet.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
equivcmet.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
equivcmet.4 | ⊢ (𝜑 → 𝑆 ∈ ℝ+) |
equivcmet.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
equivcmet.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) |
Ref | Expression |
---|---|
equivcmet | ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivcmet.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
2 | equivcmet.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
3 | 1, 2 | 2thd 265 | . . 3 ⊢ (𝜑 → (𝐶 ∈ (Met‘𝑋) ↔ 𝐷 ∈ (Met‘𝑋))) |
4 | equivcmet.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℝ+) | |
5 | equivcmet.6 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) | |
6 | 2, 1, 4, 5 | equivcfil 25347 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐶) ⊆ (CauFil‘𝐷)) |
7 | equivcmet.3 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
8 | equivcmet.5 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
9 | 1, 2, 7, 8 | equivcfil 25347 | . . . . 5 ⊢ (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶)) |
10 | 6, 9 | eqssd 4013 | . . . 4 ⊢ (𝜑 → (CauFil‘𝐶) = (CauFil‘𝐷)) |
11 | eqid 2735 | . . . . . . . 8 ⊢ (MetOpen‘𝐶) = (MetOpen‘𝐶) | |
12 | eqid 2735 | . . . . . . . 8 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
13 | 11, 12, 1, 2, 7, 8 | metss2 24541 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐶) ⊆ (MetOpen‘𝐷)) |
14 | 12, 11, 2, 1, 4, 5 | metss2 24541 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ (MetOpen‘𝐶)) |
15 | 13, 14 | eqssd 4013 | . . . . . 6 ⊢ (𝜑 → (MetOpen‘𝐶) = (MetOpen‘𝐷)) |
16 | 15 | oveq1d 7446 | . . . . 5 ⊢ (𝜑 → ((MetOpen‘𝐶) fLim 𝑓) = ((MetOpen‘𝐷) fLim 𝑓)) |
17 | 16 | neeq1d 2998 | . . . 4 ⊢ (𝜑 → (((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
18 | 10, 17 | raleqbidv 3344 | . . 3 ⊢ (𝜑 → (∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
19 | 3, 18 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))) |
20 | 11 | iscmet 25332 | . 2 ⊢ (𝐶 ∈ (CMet‘𝑋) ↔ (𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅)) |
21 | 12 | iscmet 25332 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
22 | 19, 20, 21 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 · cmul 11158 ≤ cle 11294 ℝ+crp 13032 Metcmet 21368 MetOpencmopn 21372 fLim cflim 23958 CauFilccfil 25300 CMetccmet 25302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ico 13390 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-bases 22969 df-fil 23870 df-cfil 25303 df-cmet 25305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |