![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equivcmet | Structured version Visualization version GIF version |
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 24816, metss2 24020, this theorem does not have a one-directional form - it is possible for a metric πΆ that is strongly finer than the complete metric π· to be incomplete and vice versa. Consider π· = the metric on β induced by the usual homeomorphism from (0, 1) against the usual metric πΆ on β and against the discrete metric πΈ on β. Then both πΆ and πΈ are complete but π· is not, and πΆ is strongly finer than π·, which is strongly finer than πΈ. (Contributed by Mario Carneiro, 15-Sep-2015.) |
Ref | Expression |
---|---|
equivcmet.1 | β’ (π β πΆ β (Metβπ)) |
equivcmet.2 | β’ (π β π· β (Metβπ)) |
equivcmet.3 | β’ (π β π β β+) |
equivcmet.4 | β’ (π β π β β+) |
equivcmet.5 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) |
equivcmet.6 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯π·π¦) β€ (π Β· (π₯πΆπ¦))) |
Ref | Expression |
---|---|
equivcmet | β’ (π β (πΆ β (CMetβπ) β π· β (CMetβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivcmet.1 | . . . 4 β’ (π β πΆ β (Metβπ)) | |
2 | equivcmet.2 | . . . 4 β’ (π β π· β (Metβπ)) | |
3 | 1, 2 | 2thd 264 | . . 3 β’ (π β (πΆ β (Metβπ) β π· β (Metβπ))) |
4 | equivcmet.4 | . . . . . 6 β’ (π β π β β+) | |
5 | equivcmet.6 | . . . . . 6 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯π·π¦) β€ (π Β· (π₯πΆπ¦))) | |
6 | 2, 1, 4, 5 | equivcfil 24815 | . . . . 5 β’ (π β (CauFilβπΆ) β (CauFilβπ·)) |
7 | equivcmet.3 | . . . . . 6 β’ (π β π β β+) | |
8 | equivcmet.5 | . . . . . 6 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) | |
9 | 1, 2, 7, 8 | equivcfil 24815 | . . . . 5 β’ (π β (CauFilβπ·) β (CauFilβπΆ)) |
10 | 6, 9 | eqssd 3999 | . . . 4 β’ (π β (CauFilβπΆ) = (CauFilβπ·)) |
11 | eqid 2732 | . . . . . . . 8 β’ (MetOpenβπΆ) = (MetOpenβπΆ) | |
12 | eqid 2732 | . . . . . . . 8 β’ (MetOpenβπ·) = (MetOpenβπ·) | |
13 | 11, 12, 1, 2, 7, 8 | metss2 24020 | . . . . . . 7 β’ (π β (MetOpenβπΆ) β (MetOpenβπ·)) |
14 | 12, 11, 2, 1, 4, 5 | metss2 24020 | . . . . . . 7 β’ (π β (MetOpenβπ·) β (MetOpenβπΆ)) |
15 | 13, 14 | eqssd 3999 | . . . . . 6 β’ (π β (MetOpenβπΆ) = (MetOpenβπ·)) |
16 | 15 | oveq1d 7423 | . . . . 5 β’ (π β ((MetOpenβπΆ) fLim π) = ((MetOpenβπ·) fLim π)) |
17 | 16 | neeq1d 3000 | . . . 4 β’ (π β (((MetOpenβπΆ) fLim π) β β β ((MetOpenβπ·) fLim π) β β )) |
18 | 10, 17 | raleqbidv 3342 | . . 3 β’ (π β (βπ β (CauFilβπΆ)((MetOpenβπΆ) fLim π) β β β βπ β (CauFilβπ·)((MetOpenβπ·) fLim π) β β )) |
19 | 3, 18 | anbi12d 631 | . 2 β’ (π β ((πΆ β (Metβπ) β§ βπ β (CauFilβπΆ)((MetOpenβπΆ) fLim π) β β ) β (π· β (Metβπ) β§ βπ β (CauFilβπ·)((MetOpenβπ·) fLim π) β β ))) |
20 | 11 | iscmet 24800 | . 2 β’ (πΆ β (CMetβπ) β (πΆ β (Metβπ) β§ βπ β (CauFilβπΆ)((MetOpenβπΆ) fLim π) β β )) |
21 | 12 | iscmet 24800 | . 2 β’ (π· β (CMetβπ) β (π· β (Metβπ) β§ βπ β (CauFilβπ·)((MetOpenβπ·) fLim π) β β )) |
22 | 19, 20, 21 | 3bitr4g 313 | 1 β’ (π β (πΆ β (CMetβπ) β π· β (CMetβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 β wne 2940 βwral 3061 β c0 4322 class class class wbr 5148 βcfv 6543 (class class class)co 7408 Β· cmul 11114 β€ cle 11248 β+crp 12973 Metcmet 20929 MetOpencmopn 20933 fLim cflim 23437 CauFilccfil 24768 CMetccmet 24770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ico 13329 df-topgen 17388 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-bases 22448 df-fil 23349 df-cfil 24771 df-cmet 24773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |