MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcmet Structured version   Visualization version   GIF version

Theorem equivcmet 24481
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 24464, metss2 23668, this theorem does not have a one-directional form - it is possible for a metric 𝐶 that is strongly finer than the complete metric 𝐷 to be incomplete and vice versa. Consider 𝐷 = the metric on induced by the usual homeomorphism from (0, 1) against the usual metric 𝐶 on and against the discrete metric 𝐸 on . Then both 𝐶 and 𝐸 are complete but 𝐷 is not, and 𝐶 is strongly finer than 𝐷, which is strongly finer than 𝐸. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivcmet.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcmet.3 (𝜑𝑅 ∈ ℝ+)
equivcmet.4 (𝜑𝑆 ∈ ℝ+)
equivcmet.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
equivcmet.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦)))
Assertion
Ref Expression
equivcmet (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑆,𝑦

Proof of Theorem equivcmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 equivcmet.1 . . . 4 (𝜑𝐶 ∈ (Met‘𝑋))
2 equivcmet.2 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
31, 22thd 264 . . 3 (𝜑 → (𝐶 ∈ (Met‘𝑋) ↔ 𝐷 ∈ (Met‘𝑋)))
4 equivcmet.4 . . . . . 6 (𝜑𝑆 ∈ ℝ+)
5 equivcmet.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦)))
62, 1, 4, 5equivcfil 24463 . . . . 5 (𝜑 → (CauFil‘𝐶) ⊆ (CauFil‘𝐷))
7 equivcmet.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
8 equivcmet.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
91, 2, 7, 8equivcfil 24463 . . . . 5 (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
106, 9eqssd 3938 . . . 4 (𝜑 → (CauFil‘𝐶) = (CauFil‘𝐷))
11 eqid 2738 . . . . . . . 8 (MetOpen‘𝐶) = (MetOpen‘𝐶)
12 eqid 2738 . . . . . . . 8 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1311, 12, 1, 2, 7, 8metss2 23668 . . . . . . 7 (𝜑 → (MetOpen‘𝐶) ⊆ (MetOpen‘𝐷))
1412, 11, 2, 1, 4, 5metss2 23668 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) ⊆ (MetOpen‘𝐶))
1513, 14eqssd 3938 . . . . . 6 (𝜑 → (MetOpen‘𝐶) = (MetOpen‘𝐷))
1615oveq1d 7290 . . . . 5 (𝜑 → ((MetOpen‘𝐶) fLim 𝑓) = ((MetOpen‘𝐷) fLim 𝑓))
1716neeq1d 3003 . . . 4 (𝜑 → (((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
1810, 17raleqbidv 3336 . . 3 (𝜑 → (∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
193, 18anbi12d 631 . 2 (𝜑 → ((𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)))
2011iscmet 24448 . 2 (𝐶 ∈ (CMet‘𝑋) ↔ (𝐶 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐶)((MetOpen‘𝐶) fLim 𝑓) ≠ ∅))
2112iscmet 24448 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
2219, 20, 213bitr4g 314 1 (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2943  wral 3064  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275   · cmul 10876  cle 11010  +crp 12730  Metcmet 20583  MetOpencmopn 20587   fLim cflim 23085  CauFilccfil 24416  CMetccmet 24418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-bases 22096  df-fil 22997  df-cfil 24419  df-cmet 24421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator